• Title/Summary/Keyword: Geometric approach

Search Result 715, Processing Time 0.025 seconds

A Case Study on the Development of Patient Clothes Designs -Focused on General Patient Pajamas and Obstetrics and Gynecology Gowns of Korea University Medical Center- (환자복 디자인 개발에 관한 사례 연구 -고려대학교 의료원의 일반 환자복과 산부인과용 가운을 중심으로-)

  • Lee, Yhe-Young;Lee, Yoon-Jung;Seong, Hwa-Kyung
    • Journal of the Korean Home Economics Association
    • /
    • v.44 no.12
    • /
    • pp.9-18
    • /
    • 2006
  • A case study was conducted on the development of patient clothes designs at the Korea University Medical Center, in order to provide an example of patient clothes designs which meet the hospital identity and the demands of patients and nurses. In this study, we focused on general patient pajamas and one-piece gowns worn in the obstetrics and gynecology department. A scientific and systematic design approach consisting of the following four steps was conducted in the designing process: needs assessment, design direction establishment, design presentation, and final decision. For the first step, focused group interviews and a survey were conducted to identify the needs of the patients and nurses. According to the results of the first step, 3 fabric patterns with light, modern, rhythmic, modest and ordinary images were designed utilizing the university and hospital symbols and logotypes. Fixed forms with realistic and geometric characteristics and colors, including white, yellow, blue, grey, and pink were selected to deliver the preferred image. Each fabric pattern was made in male and female versions of the color sets. The following styles of patient clothes were made with the 3 fabric samples: general patient pajamas with a U-neckline, 9/10-length sleeves and ankle-length pants, a full-length sleeved gown with openings for breast-feeding, and a gown with a deep back-neckline and button fastening. Different sizing systems for males and females were recommended for the production.

Robust Design in Terms of Minimization of Sensitivity to Uncertainty and Its Application to Design of Micro Gyroscopes (불확실 변수에 대한 구배 최소화를 이용한 강건 최적 설계와 마이크로 자이로스코프에의 응용)

  • Han, Jeong-Sam;Gwak, Byeong-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1931-1942
    • /
    • 2002
  • In this paper a formulation of robust optimization is presented and illustrated by a design example of vibratory micro gyroscopes in order to reduce the effect of variations due to uncertainties in MEMS fabrication processes. For the vibratory micro gyroscope considered it is important to match the resonance frequencies of the vertical (sensing) and lateral (driving) modes as close as possible to attain a high sensing sensitivity. A deterministic optimization in which the difference of both the sensing and driving natural frequencies is minimized as an objective function results in highly enhanced performance but apt to be very sensitive to fabrication errors. The formulation proposed is to attain robustness of the performance by including the sensitivity of the response with respect to uncertain variables as a term of objective function to be minimized. This formulation is simple and practically applicable since no detail statistical information on fabrication errors is required. The geometric variables, beam width, length and thickness of vibratory micro gyroscopes are adopted as design variables and at the same time considered as uncertain variables because here occur the fabrication errors. A robustness test in terms of a percentage yield by using the Monte Carlo simulation has shown that the robust optimum produces twice more acceptable designs than the deterministic optimum. Improvement of robustness becomes bigger as the amount of fabrication errors is assumed larger. Considering that the magnitude of fabrication errors and uncertainties in a MEMS structure are comparatively large, the present method is illustrated to be a viable approach for a robust MEMS design.

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.

Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement (사면보강 뿌리말뚝공법의 준3차원적 안정해석기법)

  • Kim, Hong-Taek;Gang, In-Gyu;Park, Sa-Won
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

On the use of the Lagrange Multiplier Technique for the unilateral local buckling of point-restrained plates, with application to side-plated concrete beams in structural retrofit

  • Hedayati, P.;Azhari, M.;Shahidi, A.R.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.673-685
    • /
    • 2007
  • Reinforced concrete beams can be strengthened in a structural retrofit process by attaching steel plates to their sides by bolting. Whilst bolting produces a confident degree of shear connection under conditions of either static or seismic overload, the plates are susceptible to local buckling. The aim of this paper is to investigate the local buckling of unilaterally-restrained plates with point supports in a generic fashion, but with particular emphasis on the provision of the restraints by bolts, and on the geometric configuration of these bolts on the buckling loads. A numerical procedure, which is based on the Rayleigh-Ritz method in conjunction with the technique of Lagrange multipliers, is developed to study the unilateral local buckling of rectangular plates bolted to the concrete with various arrangements of the pattern of bolting. A sufficient number of separable polynomials are used to define the flexural buckling displacements, while the restraint condition is modelled as a tensionless foundation using a penalty function approach to this form of mathematical contact problem. The additional constraint provided by the bolts is also modelled using Lagrange multipliers, providing an efficacious method of numerical analysis. Local buckling coefficients are determined for a range of bolting configurations, and these are compared with those developed elsewhere with simplifying assumptions. The interaction of the actions in bolted plates during buckling is also considered.

A numerical and theoretical investigation on composite pipe-in-pipe structure under impact

  • Wang, Yu;Qian, Xudong;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1085-1114
    • /
    • 2016
  • This paper investigates the transverse impact response for ultra lightweight cement composite (ULCC) filled pipe-in-pipe structures through a parametric study using both a validated finite element procedure and a validated theoretical model. The parametric study explores the effect of the impact loading conditions (including the impact velocity and the indenter shape), the geometric properties (including the pipe length and the dimensions of the three material layers) as well as the material properties (including the material properties of the steel pipes and the filler materials) on the impact response of the pipe-in-pipe composite structures. The global impact responses predicted by the FE procedure and by the theoretical model agree with each other closely. The parametric study using the theoretical approach indicates the close relationships among the global impact responses (including the maximum impact force and the maximum global displacement) in specimens with the equivalent thicknesses, proposed in the theoretical model, for the pipe-in-pipe composite structures. In the pipe-in-pipe composite structure, the inner steel pipe, together with the outer steel pipe, imposes a strong confinement on the infilled cement composite and enhances significantly the composite action, leading to improved impact resistance, small global and local deformations.

A Study on the Evaluation of Design Moments of R/C Slab by the Finite Element Method (유한요소법(有限要素法)을 이용한 철근(鐵筋)콘크리트 슬래브의 설계(設計)모멘트 산정에 관한 소고(小考))

  • Lee, Sung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.21-29
    • /
    • 1988
  • Evaluation of accurate design moments in two directions is a primary concern in designing R/C Slab. For this purpose, the use of finite element method utilizing isoparametric plate element is proposed. An example of the simply supported slab shows that the results agree well wth those from elastic plate theory throughout the span. The finite element solutions are also compared with those from equivalent frame method in a flat plate example. It is indicated that the distribution of total moment through the width of design strip using the ACI coefficients is unreasonable. In contrary to this, for the same strip model, the finite element method gives accurate moments in two directions. The proposed method can be applied to any geometric configuration of the slab system, thus the approach is considered to be much advantageous and improved one compared with existing methods.

  • PDF

An Analysis of Axisymmetric Deep Drawing by the Energy Method (에너지법에 의한 축대칭 디프드로잉의 해석)

  • 양동열;이항수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.51-61
    • /
    • 1993
  • A systematic approach of the energy method is proposed for analysis of axisymmetric deep drawing in which the total deforming region is divided into five sections by the geometric characteristic. The corresponding solution is found through optimization of the total energy dissipation with respect to some parameters assumed in the kinematically admissible velocity field defined over each region. The sheet blank is divided into three-or five-layers to consider the bending effect. For the evaluation of frictional energy, it is assumed that the blank holding force acts on the outer rim of the flange and that the contact pressure acting on punch shoulder or die shoulder has uniform distributions, respectively. The computed results by the present method are compared with the experiment and the computed results by the elastic-plastic finite element method for the distribution of thickness strain and the relation between the punch stroke and punch load. The results for the case of multi-layers show better agreements than for the case of a single layer in load vs. stroke relation and strain distribution. It is thus shown that the multi-layer technique can be effectively employed in analyzing axisymmetric deep drawing in connection with the energy method.

Lubrication Properties of Various Pattern Shapes on Rough Surfaces Considering Asperity Contact (돌기접촉을 고려한 거친 표면 위 다양한 패턴 형상에 따른 윤활 특성 연구)

  • Kim, Mi-Ru;Lee, Seung-Jun;Jeong, Jae-Ho;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.39-46
    • /
    • 2018
  • Two surfaces that have relative motion show different characteristics according to surface roughness or surface patterns in all lubrication areas. For two rough surfaces with mixed lubrication, this paper proposes a new approach that includes the contact characteristics of the surfaces and a probabilistic method for a numerical analysis of lubrication. As the contact area of the two surfaces changes according to the loading conditions, asperity contact is very important. An average flow model developed by Patir-Cheng is central to the study of lubrication for rough surfaces. This average flow model also refers to a multi-asperity contact model for deriving a modified Reynolds equation and calculating the lubricant characteristics of a bearing surface with random roughness during fluid flow. Based on the average flow model, this paper carried out a numerical analysis of lubrication using a contact model by considering a load change made by the actual contact of asperities between two surfaces. Lubrication properties show different characteristics according to the surface patterns. This study modeled various geometric surface patterns and calculated the characteristics of lubrication.

Hack's Law and the Geometric Properties of Catchment Plan-form (Hack의 법칙과 집수평면의 기하학적 특성)

  • Kim, Joo-Cheol;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.691-702
    • /
    • 2009
  • This study makes a systematic approach to Hack's law considering self-affinity and self-similarity of natural basins as well as the elongation of corresponding catchment-plan forms. Catchment-plan forms extracted from DEM appear to be the population come from the interactions of 2 hypotheses on Hack's law. It is judged that the elongation measures based on inertia moments are more intuitive than the ones based on main channel lengths. The exponent of Hack's law, h, seems to be similar to the result of Gray's study (1961). However Hurst exponent, H, being 0.96 imply that catchment-plan forms considered in this study have isotropic increasing properties with scale. From this point of view it is inferred that the shapes of the basins in this study would be more affected from self-similarity of main channel lengths than self-affinity of catchment-plan forms.