• Title/Summary/Keyword: Geological Data

Search Result 1,057, Processing Time 0.023 seconds

Talc Mineralization in the Middle Ogcheon Metamorphic Belt (II) : Poongjeon Talc Deposit (중부옥천변성대의 활석광화작용에 관한 연구 (II) : 풍전활석광상을 중심으로)

  • Park, Hee-In;Lee, In Sung;Hur, Soon Do;Shin, Dong Bok
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.543-551
    • /
    • 1997
  • Poongjeon talc deposits is emplaced in dolomite and dolomitic limestone of the Cambro-Ordovician Samtaesan Formation. Ore in Poongjeon is low grade talc and the deposit has been known as the contact metasomatic or hydrothermal replacement type related to the intrusion of late Cretaceous granite in this area. X-ray diffraction, electron microprobe analysis, fluid inclusion and stable isotope analysis were utilized to examine the mineralogy of the ore and the origin of the ore fluid. The ore from Poongjeon mine mainly consists of talc and tremolite with minor amount of illite, vermiculite, smectite, and chlorite-vermiculite mixed layer. Occurrence of ore body indicates that the talc-tremolite ore was formed through the replacement by the $SiO_2$-rich hydrothermal fluid along the bedding and dike boundaries, or contact of amphibolite and basic dike with carbonate rocks. The temperature and pressure of the ore forming fluids at the time of the talc mineralization were estimated as $350^{\circ}C$ and 400 bar, respectively, based on the heating and freezing data of the fluid inclusions in quartz from talc-tremolite veins. During the talc-tremolite formation, fluids were divided into $CO_2$-enriched fluid and $CO_2$-poor fluid from $CO_2$ immiscibility (or effervescence). Oxygen isotope values (${\delta}^{18}O$) of the talc-tremolite fall within a range between 12.2 and 12.9‰. Hydrogen isotope values(${\delta}D$) of the ore range from -60 to -85‰ and $H_2O$ contents range from 2.0 to 3.4 wt.%. ${\delta}^{18}O$ and ${\delta}D$ values of talc ore indicate that the hydrothermal fluid involved in talc-tremolite formation was of igneous origin. Oxygen and hydrogen isotopic exchange between talc ore and the surface water was negligible after talc-tremolite ore formation.

  • PDF

Case Study of Ground Penetrating Radar for Subsurface Investigation (지하레이더 탐사법을 이용한 지반조사 사례 연구)

  • 문장수;김세환;남욱현;오영철
    • The Journal of Engineering Geology
    • /
    • v.7 no.3
    • /
    • pp.161-171
    • /
    • 1997
  • The exact information on geological structures and characteristics of the subsurface must be acquired to secure quality and safety of constructions. GPR technique, one of the most updated geophysical methods, is known for its applicability to shallow-depth underground surveys. The purpose of this study is to examine the usefulness of GPR method in constructions for detailed subsurface investigations, especially detecting the boundary between basement rock and its overburden. To find appropriate depths of the geological boundaries, it is necessary to obtain velocity of electromagnetic wave propagating into the ground. Wave velocity 0.096 m/ns estimated from velocity analysis using CMP gathers is used for depth conversion from time section. The depths of geological boundaries from GPR profiles are very well correlated with boring data. In addition, GPR survey has found some undulations of the geological boundaries due to weathering, which cannot be provided by conventional coring approaches.

  • PDF

Visualization and Optimization of Construction Schedule Considering the Geological Conditions in the Complicated Underground Cavern (지하비축기지 건설시 지질조건을 고려한 건설공정의 가시화와 최적화 사례)

  • Choi, Yong-Kun;Park, Joon-Young;Lee, Sung-Am;Kim, Ho-Yeong;Lee, Hee-Suk;Lee, Seung-Cheol
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.167-173
    • /
    • 2009
  • Underground storage cavern is known as the most complicated underground project because of the complexity of construction schedule, tunnel size, and geological problems. In order to optimize the construction schedule of underground storage cavern, two up-to-date technologies were applied. The first technology was 3 dimensional visualization of complicated underground structures, and the second was 4 dimensional simulation considering construction resources, geological conditions and construction schedule. This application case shows that we can achieve optimized construction schedule in the ways to optimize the number of work teams, fleets, the sequence of tunnel excavation, the commencement time of excavation and the hauling route of materials and excavated rocks. 3 dimensional modeling can help designer being able to understand the status of complicated underground structures and to investigate the geological data in the exact 3 dimensional space. Moreover, using 4 dimensional simulation, designer is able to determine the bottle neck point which appear during hauling of excavated rocks and to investigate the daily fluctuation in cost.

Suggestion of Regression Equations for Estimating RMR Factor Rating by Geological Condition (지질 조건을 고려한 RMR 인자값 추정을 위한 선형회귀식 제안)

  • Kim, Kwang-Yeom;Yim, Sung-Bin;Kim, Sung-Kwon;Kim, Chang-Yong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.555-566
    • /
    • 2007
  • In general, RMR classification system is used for the support design of a tunnel. Face mapping during excavation and RMR-based rock classifications are conducted in order to provide information for complementary changes to preliminary survey plans and for continuous geological estimations in direction of tunnel route. Although they are ever so important, there are not enough time for survey in general and sometimes even face mapping is not available. Linear regression analysis for the estimation of mediating RQD and condition of discontinuities, which require longer time and more detailed observation in RMR, was performed and optimum regression equations are suggest as the result. The geological data collected from tunnels were analyzed in accordance with three rock types as sedimentary rock, phyllite and granite to see geological effects, generally not been considered in previous researches. Parameters for the regression analysis were set another RMR factor.

An Analysis of Pore Network of Drilling Core from Pohang Basin for Geological Storage of CO2 (이산화탄소 지중저장을 위한 포항분지 시추코어의 공극구조 분석)

  • Park, Jihwan;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.181-191
    • /
    • 2016
  • In geological storage of $CO_2$, the behavior of $CO_2$ is influenced by pore network of rock. In this study, the drilling cores from Pohang Basin were analyzed quantitatively using three-dimensional images acquired by X-ray micro computed tomography. The porosities of sandstone specimens around 740 m-depth (T1), 780 m-depth (T2) and 810 m-depth (T3) which were target strata were 25.22%, 23.97%, 6.28%, respectively. Equivalent diameter, volume, area, local thickness of pores inside the sandstone specimens were analyzed. As a result, the microstructural properties of T1 and T2 specimens were more suitable for geological storage of $CO_2$ than those of T3 specimens. The result of the study can be used as input data of the site for decision of injection condition, flow simulation and so on.

Effect of Deformation Zones on the State of In Situ Stress at a Candidate Site of Geological Repository of Nuclear Waste in Sweden (스웨덴 방사성 폐기물 처분장 후보부지의 사례를 통해 살펴본 대규모 변형대가 암반의 초기응력에 미치는 영향)

  • Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.134-148
    • /
    • 2008
  • The state of in situ stress is an important factor in considering the suitability of a site as a geological repository for nuclear waste. In this study, three-dimensional distinct numerical analysis was conducted to investigate the effect of deformation zones on the state of stress in the Oskarshamn area, which is one of two candidate sites in Sweden. A discontinuum numerical model was constructed by explicitly representing the numerous deformation zones identified from site investigation and far-field tectonic stress was applied in the constructed model. The numerical model successfully captured the variation of measured stress often observed in the rock mass containing large-scale fractures, which shows that numerical analysis can be an effective tool in improving the understanding of the state of stresses. Discrepancies between measured and modelled stress are attributed to the inconsistent quality of measured stress, uncertainty in geological geometry. and input data for fractures.

Analysis of Siting Criteria of Overseas Geological Repository (II): Hydrogeology (국외 심지층 처분장 부지선정기준 분석 (II) : 수리지질)

  • Jung, Haeryong;Kim, Hyun-Joo;Cheong, Jae-Yeol;Lee, Eun Yong;Yoon, Jeong Hyoun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.253-257
    • /
    • 2013
  • Geology, hydrogeology, and geochemistry are the main technical siting factors of a geological repository for spent nuclear fuels. This paper evaluated the siting criteria of overseas geological repository with related to hydrogeologic properties, such as hydraulic conductivity, partitioning coefficient, dispersion coefficient, boundary condition, and water age. Each country establishes the siting criteria based on its important geological backgrounds and information, and social environment. For example, Sweden and Finland that have decided a crystalline rock as a host rock of a geological repository show different siting criteria for hydraulic conductivity. In Sweden, it is preferable to avoid area where the hydraulic conductivity on a deposition hole scale (~30m) exceeds $10^{-8}m/s$, whereas Finland does not decide any criterion for the hydraulic conductivity because of limited data for it. In addition, partitioning coefficients should be less than 10-1 of average value in Swedish crystalline bedrock. However, the area where shows 100 times less than average partitioning coefficients of radionuclides in crystalline rock should be avoided in Sweden. In German, the partitioning coefficients for the majority of the long-term-relevant radionuclides should be greater than or equal to $0.001m^3/kg$. Therefore, it is strongly required to collect much and exact information for the hydrogeologic properties in order to set up the siting criteria.

Hydrogeological Characterization of Groundwater and Surface Water Interactions in Fresh-Saline Water Mixed Zone of the East Coast Lagoon Area, Korea (동해안 석호 담염수 혼합대에서 지하수와 지표수 상호작용의 수리지질학적 특성 평가)

  • Jeon, Woo-Hyun;Kim, Dong-Hun;Lee, Soo-Hyoung;Hwang, Seho;Moon, Hee Sun;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.144-156
    • /
    • 2021
  • This study examined hydrogeological characteristics of groundwater and surface water interaction in the fresh-saline water mixed zone of East Coast lagoon area, Korea, using several technical approaches including hydrological, lithological, and isotopic methods. In addition, the fresh-saline water interface was evaluated using vertical electrical conductivity (EC) data. For this purpose, three monitoring wells (SJ-P1, SJ-P2, and SJ-P3) were installed across the Songji lagoon at depths of 7.4 to 9.0 m, and water level, EC, and temperature at the wells and in the lagoon (SJ-L1) were monitored using automatic transducers from August 1 to October 21, 2021. Isotopic composition of the groundwater, lagoon water, and sea water were also monitored in the mid-September, 2013. The mixing ratios calculated from oxygen and hydrogen isotopic composition decreased with increasing depth in the monitoring wells, indicating saline water intrusion. In the study area, the interaction of groundwater-surface water-sea water was evident, and residual salinity in the sedimentary layers created in the past marine environment showed disorderly characteristics. Moreover, the horizontal flow at the lagoon's edge was more dominant than the vertical flow.

Preliminary Study on Candidate Host Rocks for Deep Geological Disposal of HLW Based on Deep Geological Characteristics (국내 심부 지질특성 연구를 통한 고준위방사성폐기물 심층처분 후보 암종 선행연구)

  • Dae-Sung Cheon;Kwangmin Jin;Joong Ho Synn;You Hong Kihm;Seokwon Jeon
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.28-53
    • /
    • 2024
  • In general, high-level radioactive waste (HLW) generated as a result of nuclear power generation should be disposed within the country. Determination of the disposal site and host rock for HLW deep geological repository is an important issue not only scientifically but also politically, economically, and socially. Considered host rock types worldwide for geological disposal include crystalline rocks, sedimentary rocks, volcanic rocks, and salt dome. However, South Korea consists of various rock types except salt dome. This paper not only analyzed the geological and rock mechanical characteristics on a nationwide scale with the preliminary results on various rock type studies for the disposal host rock, but also reviewed the characteristics and possibility of various rock types as a host rock through deep drilling surveys. Based on the nationwide screening for host rock types resulted from literature review, rock distributions, and detailed case studies, Jurassic granites and Cretaceous sedimentary rocks (Jinju and Jindong formations) were derived as a possible candidate host rock types for the geological disposal. However, since the analyzed data for candidate rock types from this study is not enough, it is suggested that the disposal rock type should be carefully determined from additional and detailed analysis on disposal depth, regional characteristics, multidisciplinary investigations, etc.

Assessment of CO2 Geological Storage Capacity for Basalt Flow Structure around PZ-1 Exploration Well in the Southern Continental Shelf of Korea (남해 대륙붕 PZ-1 시추공 주변 현무암 대지 구조의 CO2 지중저장용량 평가)

  • Shin, Seung Yong;Kang, Moohee;Shinn, Young Jae;Cheong, Snons
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.33-43
    • /
    • 2020
  • CO2 geological storage is currently considered as the most stable and effective technology for greenhouse gas reduction. The saline formations for CO2 geological storage are generally located at a depth of more than 800 m where CO2 can be stored in a supercritical state, and an extensive impermeable cap rock that prevents CO2 leakage to the surface should be distributed above the saline formations. Trough analysis of seismic and well data, we identified the basalt flow structure for potential CO2 storage where saline formation is overlain by basalt cap rock around PZ-1 exploration well in the Southern Continental Shelf of Korea. To evaluate CO2 storage capacity of the saline formation, total porosity and CO2 density are calculated based on well logging data of PZ-1 well. We constructed a 3D geological grid model with a certain size in the x, y and z axis directions for volume estimates of the saline formation, and performed a property modeling to assign total porosity to the geological grid. The estimated average CO2 geological storage capacity evaluated by the U.S. DOE method for the saline formation covered by the basalt cap rock is 84.17 Mt of CO2(ranges from 42.07 to 143.79 Mt of CO2).