• Title/Summary/Keyword: Geologic province

Search Result 45, Processing Time 0.025 seconds

A Study on the Deep Structure of Yangsan Fault by Electric and Electromagnetic Surveys in Unyang and Bong-gye Areas, Kyeongnam Province, Korea (경상남도 언양 및 봉계리 지역에서의 전기, 전자탐사에 의한 양산단층의 심부구조 연구)

  • 손호웅;윤혜수;오진용
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.525-536
    • /
    • 2000
  • Electromagnetic and electric surveys were performed to reveal the deep structure of the Yangsan fault in the Bong-gye and Unyang areas, Kyeongnam Province, Korea. Especially, high-frequency magnetotelluric (HFMT) method of EM survey was mainly employed to study the deep subsurface configuration of Yangsan fault. HFMT survey was performed at 25 points of spacing 50 m, making 1.3 km survey line in Unyang area and 13 points of spacing 50 m, making 0.6 km survey line in Bong-gye area. Two 2-D cross-sections (Unyang and Bong-gye areas) were achieved as results. Electric survey by dipole-dipole array was performed to study the structure of shallow subsurface and compare the results with HFMT surveys. The results of HFMT and electric surveys show that Yangsan fault is a geologic boundary. It is very narrow and steep (about $80^{\circ}C$), and extends to 1~1.5 km depth.

  • PDF

A Case Study of Landslides due to Heavy Rainfall (집중호우시 산사태 원인분석에 관한 사례연구)

  • Yoo, Nam-Jae;Park, Byung-Soo
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.303-315
    • /
    • 2001
  • This study is a research result of investigating causes of landslides occurred at Uijongbu in Kyonggi Province, Korea. For works of this research, informations and data about landslides occurred at the site, geological and topographical informations were collected to analyze causes of landslides, and mapping landslides was performed by using results of field investigation. Data about rainfall during occurrence of landslides around Uijongbu was also used to find the effect of intense rainfall on occurrence of landslides. Based on informations obtained from field investigation and collected data, the scale and the pattern of landslides were analyzed and influencing factors on landslide such as intensity and duration of rainfall, topography, geologic condition, geotechnical engineering properties of ground, forestry were investigated statistically to find causes of landslides. On the other hands, for geotechnical engineering respects, slope stability analysis was performed for the typical sites chosen from the sites where the landslides occurred, using informations obtained from detailed topographical survey with total stations, field reconnaissance and results from laboratory tests.

  • PDF

Suggestion on the Dredging Time of Sediments Behind Debris Barrier Using Rainfall Data (강우자료를 이용한 사방댐 배면 퇴적물의 준설시기 선정)

  • Song, Young-Suk;Kim, Minseok;Jung, In-Keun
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • The rainfall intensity-duration curve (I-D curve) was used for selecting the dredging time of sediments behind a debris barrier which is located at the study area in Inje-gun, Kangwon Province. The I-D curve was newly suggested by using the data of rainfall-induced landslides for about 30 years from June to September in Kangwon Province. According to the monitoring results, the landslides have been not occurred during the monitoring period of the dredged sediments management system at the study area, and also all of the rainfall events were located below the I-D curve. The weight of the dredged sediments measured at the management system in the field was increased but the weight increment was small. It means that the increase of the dredged sediments was not the effect of landslide but the effect of soil erosion at the ground surface due to heavy rainfall. The weight of the dredged sediments behind a debris barrier could be known in real time using the rainfall data measured at the management system. Also, when the I-D curve is used with the management system, it is possible to select the optimum dredging time for sediments behind debris barrier.

Seismic Studies on Velocity Anisotropy in the Ulsan Fault Zone (울산단층대에서의 굴절파 속도이방성 연구)

  • Lee, Kwang-Ja;Kim, Ki-Young;Kim, Woo-Hyuk;Im, Chang-Bock
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • As a part of geophysical studies on segmentation of the Ulsan fault, walkaway refraction seismic data were measured at 17 stations near National Road 7 between Kyungju and Ulsan. Seismic anisotropy was analyzed in the offset range of 1-48 m. The average refraction velocity of 1787 m/s indicates the refractor is the upper boundary of weathered basement. P-wave anisotropy is computed to be 0.056 in average, which may serve as a weak evidence that the strike of major geologic structure coincide with the inferred fault direction. In the south of the province boundary between Kyungsangnam-do and Kyungsangbuk-do, the velocity anisotropy is normal in that P-wave velocity in the strike direction is faster than the one measured in the dip direction. On the contrary, it appears that the fault strikes in many directions or that fractures may be developed better in the dip direction in the northern par. Such a difference in anisotropic pattern is believed to be a seismic evidence indicating that a segmentation boundary of the Ulsan fault locates near the province boundary.

  • PDF

Study on the Metal Ore Deposits of Gyeongsang buk-do Area (경상북도(慶尙北道) 일원(一圓)에 부존(賦存)하고 있는 금속지하자원(金屬地下資源)의 지질광상학적(地質鑛床學的) 연구(硏究))

  • Kim, Y.K.;Lee, J.Y.;Kim, S.W.;Koh, I.S.
    • Economic and Environmental Geology
    • /
    • v.9 no.3
    • /
    • pp.143-156
    • /
    • 1976
  • The Cretaceous metal ore deposits in the Gyeongsang basin of Gyeongsangbuk-do are characterized by the formation of metallogenic provinces which show zonal distribution pattern around Yeonil province where pneumatolytic type is dominated and hydrothermal type are distributed in the order of decreasing temperature type outward. Some Cretaceous granitic rocks include zoned alkali feldspars which reflect rapid variation of $H_2O$ during emplacement and crystallization of the water-saturated granitic magma. The ore deposits are considered to be originated from upward transportation of ore solution from the excess of water exhausted from uprising magma, which seems to be intimately related to the fact that the majority of the ore deposits in Daegu area are cummulated around the granites including zoned alkali feldspars. In order to collect geochemical data necessary for geochemical exploration in the study area, certain trace elements were chosen as pathfinders from monzonite and soil in the vicinity of Dalsung Tungsten Mine by studying the dispersion patterns of trace elements: Ba and Sr show trends to decrease toward ore deposit while Cu, Pb, and Mo increase. Around mining area there are distributed apparently Equisetum arvense Linne and Mentha sachinensis Kudo which may be used as index plants. In the viewpoint of geologic structure, the trends of the ore veins in contact aureole around the Palgongsan granite body correspond with the pre- and syn- plutonism joint pattern in hornfels in the area.

  • PDF

우전탄좌 지질조사 보고서

  • 이돈영;유양수
    • Journal of the Korean Professional Engineers Association
    • /
    • v.5 no.17
    • /
    • pp.3-10
    • /
    • 1972
  • This report is the result of the basic geologic investigation for the purpose of preparing the long-term development program of the U-jeon Consolidated Coal kline. The Consolidated Coal Mine is located at Gujeol-ri, Wangsan-myeon, Myeongju-gun, and Yucheon-ri, Bug-myeon, Jeongseon-gun, Gan-gweon Province (128$^{\circ}$ 43′10.4"-128$^{\circ}$ 46′10. 4"of east long-ititude, 37$^{\circ}$ 30′-37$^{\circ}$ 33′ of north latitude). This region, the western part of Taebaek mountain range, shows a ragged mountinous feature. Formations of the Pyeongan System of Paleozoic Era are distribu ted in the region with the surrounding Great Limestone Series of Joseon System which covers the south-eastern part of the region. The Pyeongan System is divided into four formations, namely, the Hongjeom, the Sadong, the Gobang and the Hongam, in ascending order. The sadong Formation intercalates several coal beds, and two coal beds out of them are minable. The coal beds are variable in thickness, having the repeated swelled or poket and the pinched parts, which suggest all intense disturbance caused by folding. The heat value of the coal is 5, 500cal. on the average. The total amount of coal reserves of the U-jeon consolidated Coal Mine is estimated at about thirty million metric tons.

  • PDF

Characterizing Hydraulic Properties by Grain-Size Analysis of Fluvial Deposits Depending on Stream Path in Korea

  • Oh, Yun-Yeong;Hamm, Se-Yeong;Chung, Sang Yong;Lee, Byeong Dae
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.129-137
    • /
    • 2013
  • The infiltration of rainwater into the surface soil is highly dependent on hydraulic variables, such as the infiltration rate, capillary fringe, moisture content, and unsaturated/saturated hydraulic conductivity. This study estimates the hydraulic conductivity (K) of fluvial deposits at three sites on the right and left banks of Nakdong River in Gyeongbuk Province, South Korea, including the Gumi, Waegwan, and Seongju bridge sites. The K values of 80 samples from 13 boreholes were estimated by using six grain-size methods (Hazen, Slichter, Kozeny, Beyer, Sauerbrei, and Pavchich formulae). The Beyer, Hazen, and Slichter methods showed a better relationship with K values along with an effective grain size than did the other three methods. The grain-size, pumping test, and slug test analyses resulted in different K values, but with similar K values in the grain-size analysis and pumping test. The lower K values of the slug test represent the uppermost fine sand layer.

Geologic Report of the Second Yeonhwa Mine, Kangwon Province, Korea (제이연화광산(第二蓮花鑛山)의 지질광상(地質鑛床)에 대(對)하여)

  • Han, Kab Soo
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.211-217
    • /
    • 1972
  • The Second Yeon Hwa Mine which belongs to a so called Lead-Zines Belt Area in the central east Korea is located at about 10 km northeast of the Seogpo railway station on Yeongdong Line. The exploitation of the mine started in June, 1969 and furnished the machinary ore dressing plant in November, 1971. The current monthly production of rude ore is 15,000 meteric tons. The results of the study on the lead-zinc-copper deposits of the Second Yeonhwa mine are summerized as follows: (1) main ore deposits of the mine are localized in the Pungchon Limestion formation of Cambrian age, (2) related ingneous rock with ore deposits is granite porphyry, which distributed in NS and $N50^{\circ}W$ trend, (3) ore solution ascended along the $N50^{\circ}W$ trend which represents folding axis and fault plane and mineralized selectively in the limestone formation. (4) high grade ore deposits are localized in concave and convex boundaries of granite porphyry, and hanging walls of shale bed ($P_2S$ shale bed) in Pungchon Limestone formation and (5) skarn minerals are consisted of garnet, hedenbergite, diopside, and sulfide minerals are composed of zincblenede, galena, phyrhotite, pyrite and some amount of chalcopyrite and arsenopyrite.

  • PDF

Areal Distribution Ratio of Rock ffes with Geologic Ages in the Gyeonggi-Seoul-Incheon Areas (경기-서울-인천지역 구성암류의 지질시대별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.208-216
    • /
    • 2007
  • Based on digital geologic and geomorphic maps of 1 : 250,000 scale, distributive ratios of rock types were obtained by ArcGIS 9.0 program in the Gyeonggi, Seoul and Incheon areas of the Gyeonggi province. In the Gyeonggi area, 37 rock types are developed, and their geologic ages can be classified into Precambrian, Age-unknown, Triassic, Jurassic, Cretaceous and Quatemary. Among them, distributive ratios are decreasing in the order of Jurassic Daebo granites, Precambrian banded gneiss of Gyeonggi gneiss complex and Quatemary alluvium, all of which comprise about 83.7% of the rock types in the area. In the Seoul and Incheon areas, 10 and 15 rock types are developed, respectively., with the firmer being classified into Precambrian, Jurassic and Quatemary, and the latter into Precambrian, Jurassic, Cretaceous and Quatemary. In the Seoul area, distributive ratios are decreasing in the order of banded gneiss of Gyeonggi gneiss complex, Daebo granites and alluvium, which consist of 95.5% of the rocks in the area. In the Incheon area, distributive ratios are decreasing in the order of alluvium, Daebo granites, banded gneiss of Gyeonggi gneiss complex, reclaimed land, and schists of Gyeonggi gneiss complex, which occupy about 96.2% of the rocks in the area. The ratio of alluvium in the Incheon area is greater than that of Gyeonggi and Seoul areas, and the ratio of reclaimed land in the Incheon area is greater that of the Seoul, which can be attributed to the recent reclamation of the land for the industrial results such as new town development along the coastline of the Gyeonggi Bay.

Development of a GIS-based Computer Program to Design Countermeasures against Debris Flows (GIS기반 토석류 산사태 대응공법 설계 프로그램 개발)

  • Song, Young-Suk;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2013
  • We developed a computer program (CDFlow v. 1.0) to design countermeasures against debris flows in natural terrain. The program can predict the probability of landslides occurring in natural terrain and can estimate the zone of damage caused by a debris flow. It can also be used to design the location and size of countermeasures against the debris flow. The program is run using the ArcGIS Engine, which is one of the most well-known Geographic Information System (GIS) tools for developers. The quasi-dynamic wetness index and the infinite slope stability equation were applied to predict landslide probability as a type of slope safety factor. The calculated safety factor was compared with the required safety factor, and areas of high probable potential for landslides were then selected and represented on the digital map. The volume of debris flow was estimated using these areas of high probable potential for landslides and soil depth. The accumulated volume of debris flow can be calculated along the flow channel. To assess the accuracy of the program, it was applied to a real landslide site at Deoksan-ri, Inje-gun, Kangwon-Province, where four debris barriers have been installed in the watershed of the site. The results of soil tests and a field survey indicate that the program has great potential for estimating probable landslide areas and the trajectory of debris flows. Calculation of the capacity volume of existing debris barriers revealed that they had insufficient capacity to store the calculated amount of debris flow. Therefore, this program enables a rational estimation of the optimal location and size of debris barriers.