• Title/Summary/Keyword: Genome wide

Search Result 704, Processing Time 0.039 seconds

Genome-wide analysis of Solanum lycopersicum L. cyclophilins

  • Khatun, Khadiza;Robin, Arif Hasan Khan;Islam, Md. Rafiqul;Jyoti, Subroto Das;Lee, Do-Jin;Kim, Chang Kil;Chung, Mi-Young
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.15-29
    • /
    • 2022
  • Cyclophilins (CYPs) are highly conserved ubiquitous proteins belong to the peptidyl prolyl cis/trans isomerase (PPIase) superfamily. These proteins are present in a wide range of organisms; they contain a highly conserved peptidyl-prolyl cis/trans isomerase domain. A comprehensive database survey identified a total of 35 genes localized in all cellular compartments of Solanum lycopersicum L., but largely in the cytosol. Sequence alignment and conserved motif analyses of the SlCYP proteins revealed a highly conserved CLD motif. Evolutionary analysis predicted the clustering of a large number of gene pairs with high sequence similarity. Expression analysis using the RNA-Seq data showed that the majority of the SlCYP genes were highly expressed in mature leaves and blooming flowers, compared with their expression in other organs. This study provides a basis for the functional characterization of individual CYP genes in the future to elucidate their role(s) in protein refolding and long-distance signaling in tomatoes and in plant biology, in general.

Comparison of Normalization Methods for Defining Copy Number Variation Using Whole-genome SNP Genotyping Data

  • Kim, Ji-Hong;Yim, Seon-Hee;Jeong, Yong-Bok;Jung, Seong-Hyun;Xu, Hai-Dong;Shin, Seung-Hun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.231-234
    • /
    • 2008
  • Precise and reliable identification of CNV is still important to fully understand the effect of CNV on genetic diversity and background of complex diseases. SNP marker has been used frequently to detect CNVs, but the analysis of SNP chip data for identifying CNV has not been well established. We compared various normalization methods for CNV analysis and suggest optimal normalization procedure for reliable CNV call. Four normal Koreans and NA10851 HapMap male samples were genotyped using Affymetrix Genome-Wide Human SNP array 5.0. We evaluated the effect of median and quantile normalization to find the optimal normalization for CNV detection based on SNP array data. We also explored the effect of Robust Multichip Average (RMA) background correction for each normalization process. In total, the following 4 combinations of normalization were tried: 1) Median normalization without RMA background correction, 2) Quantile normalization without RMA background correction, 3) Median normalization with RMA background correction, and 4) Quantile normalization with RMA background correction. CNV was called using SW-ARRAY algorithm. We applied 4 different combinations of normalization and compared the effect using intensity ratio profile, box plot, and MA plot. When we applied median and quantile normalizations without RMA background correction, both methods showed similar normalization effect and the final CNV calls were also similar in terms of number and size. In both median and quantile normalizations, RMA backgroundcorrection resulted in widening the range of intensity ratio distribution, which may suggest that RMA background correction may help to detect more CNVs compared to no correction.

Bovine Genome-wide Association Study for Genetic Elements to Resist the Infection of Foot-and-mouth Disease in the Field

  • Lee, Bo-Young;Lee, Kwang-Nyeong;Lee, Taeheon;Park, Jong-Hyeon;Kim, Su-Mi;Lee, Hyang-Sim;Chung, Dong-Su;Shim, Hang-Sub;Lee, Hak-Kyo;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.166-170
    • /
    • 2015
  • Foot-and-mouth disease (FMD) is a highly contagious disease affecting cloven-hoofed animals and causes severe economic loss and devastating effect on international trade of animal or animal products. Since FMD outbreaks have recently occurred in some Asian countries, it is important to understand the relationship between diverse immunogenomic structures of host animals and the immunity to foot-and-mouth disease virus (FMDV). We performed genome wide association study based on high-density bovine single nucleotide polymorphism (SNP) chip for identifying FMD resistant loci in Holstein cattle. Among 624532 SNP after quality control, we found that 11 SNPs on 3 chromosomes (chr17, 22, and 15) were significantly associated with the trait at the p.adjust <0.05 after PERMORY test. Most significantly associated SNPs were located on chromosome 17, around the genes Myosin XVIIIB and Seizure related 6 homolog (mouse)-like, which were associated with lung cancer. Based on the known function of the genes nearby the significant SNPs, the FMD resistant animals might have ability to improve their innate immune response to FMDV infection.

Genome Wide Expression Analysis of the Restored Changes by Carthami Flos Extract Treatment on Rat Brain Injury (흰쥐의 손상된 뇌조직에서의 유전자 발현 변화에 대한 홍화(紅花) 추출물 투여의 작용)

  • Kim, Bu-Yeo;Limb, Se-Hyun;Lee, Guem-San;Kim, Hyung-Woo;Lim, Chi-Yeon;Cho, Su-In
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.4
    • /
    • pp.706-713
    • /
    • 2010
  • Objectives : The source is from the flower of Carthamus tinctorius L., family Compositae. It is used in clinical medicine to promote blood circulation, remove blood stasis, promote menstruation and alleviate pain. In the present study, we investigated the genome wide analysis of Carthami Flos on the intra-cranial hemorrhage(ICH) model. Methods : ICH in rat was induced by injection of collagenase type IV and Carthami Flos extract(CFe) was administered orally. The molecular profile of cerebral hemorrhage in rat brain tissue was measured using microarray technique to identify up- or down- regulated genes in brain tissue. Results : Expression profile showed that diverse genes were up- or down-regulated by ICH induction. Administration of CFe restored the expression level of some of altered genes by ICH to normal expressional level. Interestingly, these recovered genes by CFe were involved in the same biological pathways which were significantly activated or suppressed by ICH. Conclusion : The above results might explain the therapeutic mechanism of CFe on ICH. Further, by analyzing interaction network, core genes was identified which could be key molecular targets of CFe against ICH.

Genome-wide Association Study (GWAS) and Its Application for Improving the Genomic Estimated Breeding Values (GEBV) of the Berkshire Pork Quality Traits

  • Lee, Young-Sup;Jeong, Hyeonsoo;Taye, Mengistie;Kim, Hyeon Jeong;Ka, Sojeong;Ryu, Youn-Chul;Cho, Seoae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1551-1557
    • /
    • 2015
  • The missing heritability has been a major problem in the analysis of best linear unbiased prediction (BLUP). We introduced the traditional genome-wide association study (GWAS) into the BLUP to improve the heritability estimation. We analyzed eight pork quality traits of the Berkshire breeds using GWAS and BLUP. GWAS detects the putative quantitative trait loci regions given traits. The single nucleotide polymorphisms (SNPs) were obtained using GWAS results with p value <0.01. BLUP analyzed with significant SNPs was much more accurate than that with total genotyped SNPs in terms of narrow-sense heritability. It implies that genomic estimated breeding values (GEBVs) of pork quality traits can be calculated by BLUP via GWAS. The GWAS model was the linear regression using PLINK and BLUP model was the G-BLUP and SNP-GBLUP. The SNP-GBLUP uses SNP-SNP relationship matrix. The BLUP analysis using preprocessing of GWAS can be one of the possible alternatives of solving the missing heritability problem and it can provide alternative BLUP method which can find more accurate GEBVs.

Genome-wide Association Study for Warner-Bratzler Shear Force and Sensory Traits in Hanwoo (Korean Cattle)

  • Dang, C.G.;Cho, S.H.;Sharma, A.;Kim, H.C.;Jeon, G.J.;Yeon, S.H.;Hong, S.K.;Park, B.Y.;Kang, H.S.;Lee, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1328-1335
    • /
    • 2014
  • Significant SNPs associated with Warner-Bratzler (WB) shear force and sensory traits were confirmed for Hanwoo beef (Korean cattle). A Bonferroni-corrected genome-wide significant association (p< $1.3{\times}10^{-6}$) was detected with only one single nucleotide polymorphism (SNP) on chromosome 5 for WB shear force. A slightly higher number of SNPs was significantly (p<0.001) associated with WB shear force than with other sensory traits. Further, 50, 25, 29, and 34 SNPs were significantly associated with WB shear force, tenderness, juiciness, and flavor likeness, respectively. The SNPs between p = 0.001 and p = 0.0001 thresholds explained 3% to 9% of the phenotypic variance, while the most significant SNPs accounted for 7% to 12% of the phenotypic variance. In conclusion, because WB shear force and sensory evaluation were moderately affected by a few loci and minimally affected by other loci, further studies are required by using a large sample size and high marker density.

Identification of genes related to intramuscular fat content of pigs using genome-wide association study

  • Won, Sohyoung;Jung, Jaehoon;Park, Eungwoo;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.157-162
    • /
    • 2018
  • Objective: The aim of this study is to identify single nucleotide polymorphisms (SNPs) and genes related to pig IMF and estimate the heritability of intramuscular fat content (IMF). Methods: Genome-wide association study (GWAS) on 704 inbred Berkshires was performed for IMF. To consider the inbreeding among samples, associations of the SNPs with IMF were tested as random effects in a mixed linear model using the genetic relationship matrix by GEMMA. Significant genes were compared with reported pig IMF quantitative trait loci (QTL) regions and functional classification of the identified genes were also performed. Heritability of IMF was estimated by GCTA tool. Results: Total 365 SNPs were found to be significant from a cutoff of p-value <0.01 and the 365 significant SNPs were annotated across 120 genes. Twenty five genes were on pig IMF QTL regions. Bone morphogenetic protein-binding endothelial cell precursor-derived regulator, forkhead box protein O1, ectodysplasin A receptor, ring finger protein 149, cluster of differentiation, tyrosine-protein phosphatase non-receptor type 1, SRY (sex determining region Y)-box 9 (SOX9), MYC proto-oncogene, and macrophage migration inhibitory factor were related to mitogen-activated protein kinase pathway, which regulates the differentiation to adipocytes. These genes and the genes mapped on QTLs could be the candidate genes affecting IMF. Heritability of IMF was estimated as 0.52, which was relatively high, suggesting that a considerable portion of the total variance of IMF is explained by the SNP information. Conclusion: Our results can contribute to breeding pigs with better IMF and therefore, producing pork with better sensory qualities.

Genome-wide association study of rice core set related selenium content

  • Choi, Buung;Lee, Sang Beom;Kim, Gyeong Jin;Kim, Kyu Won;Yoo, Ji Hyock;Oh, Kyeong Seok;Moon, Byeong Churl;Park, Yong Jin;Park, Sang Won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.158-158
    • /
    • 2017
  • The purpose of this study was to identify the candidate genes involved in selenium content in brown rice. Rice (Oryza sativa L.) was important crop including diverse functional substance such as carbohydrate, protein, lysine and tocopherol, mineral. Especially, selenium as nutritionally important minerals, it was known to activate the immune system, antioxidant effect and inhibition of carcinogenesis. Also recommended daily requirements of the United States and the United Kingdom were 55 to 90 ug for selenium. Therefore, selenium content in brown rice of core-set were analyzed by using ICP-MS (Inductively Coupled Plasma Mass Spectrometer) and GWAS (Genome Wide Association Study) was conducted to search for candidate genes in this study. The new natural variants identified through haplotyping analysis would be useful to develop new rice varieties with improved storage ability of the valuable mineral through the future molecular breeding.

  • PDF

A genome-wide association study of reproduction traits in four pig populations with different genetic backgrounds

  • Jiang, Yao;Tang, Shaoqing;Xiao, Wei;Yun, Peng;Ding, Xiangdong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1400-1410
    • /
    • 2020
  • Objective: Genome-wide association study and two meta-analysis based on GWAS performed to explore the genetic mechanism underlying variation in pig number born alive (NBA) and total number born (TNB). Methods: Single trait GWAS and two meta-analysis (single-trait meta analysis and multi-trait meta analysis) were used in our study for NBA and TNB on 3,121 Yorkshires from 4 populations, including three different American Yorkshire populations (n = 2,247) and one British Yorkshire populations (n = 874). Results: The result of single trait GWAS showed that no significant associated single nucleotide polymorphisms (SNPs) were identified. Using single-trait meta analysis and multi-trait meta analysis within populations, 11 significant loci were identified associated with target traits. Spindlin 1, vascular endothelial growth factor A, forkhead box Q1, msh homeobox 1, and LHFPL tetraspan submily member 3 are five functionally plausible candidate genes for NBA and TNB. Compared to the single population GWAS, single-trait Meta analysis can improve the detection power to identify SNPs by integrating information of multiple populations. The multiple-trait analysis reduced the power to detect trait-specific loci but enhanced the power to identify the common loci across traits. Conclusion: In total, our findings identified novel genes to be validated as candidates for NBA and TNB in pigs. Also, it enabled us to enlarge population size by including multiple populations with different genetic backgrounds and increase the power of GWAS by using meta analysis.

Genome-wide Association Study of Integrated Meat Quality-related Traits of the Duroc Pig Breed

  • Lee, Taeheon;Shin, Dong-Hyun;Cho, Seoae;Kang, Hyun Sung;Kim, Sung Hoon;Lee, Hak-Kyo;Kim, Heebal;Seo, Kang-Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.303-309
    • /
    • 2014
  • The increasing importance of meat quality has implications for animal breeding programs. Research has revealed much about the genetic background of pigs, and many studies have revealed the importance of various genetic factors. Since meat quality is a complex trait which is affected by many factors, consideration of the overall phenotype is very useful to study meat quality. For integrating the phenotypes, we used principle component analysis (PCA). The significant SNPs refer to results of the GRAMMAR method against PC1, PC2 and PC3 of 14 meat quality traits of 181 Duroc pigs. The Genome-wide association study (GWAS) found 26 potential SNPs affecting various meat quality traits. The loci identified are located in or near 23 genes. The SNPs associated with meat quality are in or near five genes (ANK1, BMP6, SHH, PIP4K2A, and FOXN2) and have been reported previously. Twenty-five of the significant SNPs also located in meat quality-related QTL regions, these result supported the QTL effect indirectly. Each single gene typically affects multiple traits. Therefore, it is a useful approach to use integrated traits for the various traits at the same time. This innovative approach using integrated traits could be applied on other GWAS of complex-traits including meat-quality, and the results will contribute to improving meat-quality of pork.