References
- Bolormaa, S., L. R. Porto Neto, Y. D. Zhang, R. J. Bunch, B. E. Harrison, M. E. Goddard, and W. Barendse. 2011. A genome-wide association study of meat and carcass traits in Australian cattle. J. Anim. Sci. 89:2297-2309. https://doi.org/10.2527/jas.2010-3138
- Caine, W. R., J. L. Aalhus, D. R. Best, M. E. R. Dugan, and L. E. Jeremiah. 2003. Relationship of texture profiles analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Sci. 64:333-339. https://doi.org/10.1016/S0309-1740(02)00110-9
- Carmack, C. F., C. L. Kastner, M. E. Dikeman, J. R. Schwenke, and C. M. Garcia Zepeda. 1995. Sensory evaluation of beef flavor intensity, tenderness and juiciness among major muscles. Meat Sci. 39:143-147. https://doi.org/10.1016/0309-1740(95)80016-6
- Casas, E. 2002. Identification of quantitative trait loci in beef cattle. Archivos Latinoamericanos de Produccion Anim. 10: 54-61.
- Casas, E., S. N. White, D. G. Riley, T. P. L. Smith, R. A. Brenneman, T. A. Olson, D. D. Johnson, S. W. Coleman, G. L. Bennett, and C. C. Chase. 2005. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J. Anim. Sci. 83:13-19. https://doi.org/10.2527/2005.83113x
- Casas, E., S. N. White, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, D. G. Riley, C. C. Chase, D. D. Johnson, and T. P. L. Smith. 2006. Effects of calpastatin and (micro)-calpain markers in beef cattle on tenderness traits. J. Anim. Sci. 84: 520-525. https://doi.org/10.2527/2006.843520x
- Cho, S. H., J. Kim, B. Y. Park, P. N. Seong, G. H. Kim, S. G. Jung, S. K. Im, and D. H. Kim. 2010. Assessment of meat quality properties and development of a palatability prediction model for Korean Hanwoo steer beef. Meat Sci. 86:236-242. https://doi.org/10.1016/j.meatsci.2010.05.011
- Destefanis, G., A. Brugiapaglia, M. T. Barge, and E. Dal Molin. 2008. Relationship between beef consumer tenderness perception and Warner-Bratzler shear force. Meat Sci. 78:153-156. https://doi.org/10.1016/j.meatsci.2007.05.031
- Drinkwater, R. D., Y. Li, I. Lenane, G. P. Davis, R. Shorthose, B. E. Harrison, K. Richardson, D. Ferguson, R. Stevenson, J. Renaud, I. Loxton, R. J. Hawken, M. B. Thomas, S. Newman, D. J. S. Hetzel, and W. Barendse. 2006. Detecting quantitative trait loci affecting beef tenderness on bovine chromosome 7 near calpastatin and lysyl oxidase. Aust. J. Exp. Agric. 46:159-164. https://doi.org/10.1071/EA05185
- Dunner, S., N. Sevane, D. Garcia, O. Cortes, A. Valentini, J. L. Williams, B. Mangin, J. Canon, and H. Leveziel. 2013. The GeMQual consortium. Association of genes involved in carcass and meat quality traits in 15 European bovine breeds. Livest. Sci. 154:34-44. https://doi.org/10.1016/j.livsci.2013.02.020
- Jeremiah, L. E. 1982. Consumer preferences regarding cooking methods and times for beef loin steaks in central Alberta. J. Consum. Stud. Home Econ. 6:79 -86. https://doi.org/10.1111/j.1470-6431.1982.tb00587.x
- Keele, J. W., S. D. Shackelford, S. M. Kappes, M. Koohmaraie, and R. T. Stone. 1999. A region on bovine chromosome 15 influences beef longissimus tenderness in steers. J. Anim. Sci. 77:1364-1371. https://doi.org/10.2527/1999.7761364x
- Koohmaraie, M. 1994. Muscle proteinases and meat ageing. Meat Sci. 36:93-104. https://doi.org/10.1016/0309-1740(94)90036-1
- Koohmaraie, M., M. P. Kent, S. D. Shackleford, E. Veiseth, and T. L. Wheeler. 2002. Meat tenderness and muscle growth: Is there any relationship. Meat Sci. 62:345-352. https://doi.org/10.1016/S0309-1740(02)00127-4
-
Lee, S. H., S. C. Kim, H. H. Chai, S. H. Cho, D. J. Lim, B. H. Choi, C. G. Dang, C. Gondro, B. S. Yang, and S. K. Hong. 2013. Mutations in calpastatin and
$\mu$ -calpain are associated with meat tenderness, flavor, and juiciness of Hanwoo (Korean cattle): Molecular modeling of the effects of substitutions in the calpastatin/$\mu$ -calpain complex. Meat Sci. 96:1501-1508. - Love, J. 1994. Product acceptability evaluation. In: Quality Attributes and Their Measurement in Meat, Poultry and Fish Products. (Eds. A. M. Pearson and T. R. Dutson). Blackie Academic and Professional, Glasgow, UK. Adv. Meat Res. 9:337-358.
- Marshall, D. M. 1999. Genetics of Meat Quality. CABI International, Oxfordshire, UK.
- Matukumalli, L. K., C. T. Lawley, R. D. Schnabel, J. F. Taylor, M. F. Allan, M. P. Heaton, J. O'Connell, S. S. Moore, T. P. L. Smith, T. S. Sonstegard, and C. P. VanTassell. 2009. Development and characterization of a high density SNP genotyping assay for cattle. Plos one. 4(4):e5350. https://doi.org/10.1371/journal.pone.0005350
- Meuwissen, T. H. E. and M. E. Goddard. 2000. Fine mapping quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155:421-430.
- Miller, M. F., M. A. Carr, C. B. Ramsey, K. L. Crokett, and L. C. Hoover. 2001. Consumer thresholds for establishing the values of beef tenderness. J. Anim. Sci. 79:3062-3068. https://doi.org/10.2527/2001.79123062x
- Page, B. T., E. Casas, M. P. Heaton, N. G. Cullen, D. L. Hyndman, C. A. Morris, A. M. Crawford, T. L. Wheeler, M. Koohmaraie, J. W. Keele, and T. P. L. Smith. 2002. Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80:3077-3085. https://doi.org/10.2527/2002.80123077x
- Page, B. T., E. Casas, R. L. Quaas, R. M. Thallman, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, S. N. White, G. L. Bennett, J. W. Keele, M. E. Dikeman, and T. P. L. Smith. 2004. Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. J. Anim. Sci. 82:3474-3481. https://doi.org/10.2527/2004.82123474x
- Pausch, H., K. Flisikowski, S. Jung, R. Emmerling, C. Edel, K. Gotz, and R. Fries. 2011. Genome-wide association study identifies two major loci affecting calving ease and growth-related traits in cattle. Genetics 187:289-297. https://doi.org/10.1534/genetics.110.124057
- Rolf, M. M., S. D. Mckay, M. C. McClure, J. E. Decker, T. M. Taxis, R. H. Chapple, D. A. Vasco, S. J. Gregg, J. W. Kim, R. D. Schnabel, and J. F. Taylor. 2010. How the next generation of genetic technologies will impact beef cattle selection. Proceedings of the Beef Improvement Federations 42nd Annual Research Symposium and Annual Meeting, Columbia, MO, USA. 46-56.
- Schenkel, F. S., S. P. Miller, Z. Jiang, I. B. Mandell, X. Ye, H. Li, and J. W. Wilton. 2006. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J. Anim. Sci. 84:291-299. https://doi.org/10.2527/2006.842291x
- Shackelford, S. D., T. L. Wheeler, M. K. Meade, J. O. Reagan, B. L. Byrnes and M. Koohmaraie. 2001. Consumer impressions of Tender Select beef. J. Anim. Sci. 79:2605-2614. https://doi.org/10.2527/2001.79102605x
- Shackelford, S. D., T. L. Wheeler, and M. Koohmaraie. 2005. On-line classification of US Select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy. eat Sci. 69:409-415. https://doi.org/10.1016/j.meatsci.2004.08.011
- Shahidi, F. and L. J. Rubin. 1986. Meat flavor volatiles: A review of the composition, techniques of analysis, and sensory evaluations. CRC Crit. Rev. Food Sci. Nutr. 24:141-243. https://doi.org/10.1080/10408398609527435
- Wheeler, T. L., S. D. Shackelford, and M. Koohmaraie. 2000. Relationship of beef longissimus tenderness classes to tenderness of gluteus medius, semimembranosus, and biceps femoris. J. Anim. Sci. 78:2856-2861. https://doi.org/10.2527/2000.78112856x
- White, S. N., E. Casas, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, D. G. Riley, C. C. Chase, Jr., D. D. Johnson, J. W. Keele, and T. P. L. Smith. 2005. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J. Anim. Sci. 83:2001-2008. https://doi.org/10.2527/2005.8392001x
Cited by
- Genome-Wide Association Study Reveals the PLAG1 Gene for Knuckle, Biceps and Shank Weight in Simmental Beef Cattle vol.11, pp.12, 2016, https://doi.org/10.1371/journal.pone.0168316
- Accuracy of genomic breeding values for meat tenderness in Polled Nellore cattle1 vol.94, pp.7, 2016, https://doi.org/10.2527/jas.2016-0279
- muscle and its relationships with intramuscular fat, shear force, and environmental factors vol.98, pp.3, 2018, https://doi.org/10.1139/cjas-2017-0064
- Functional Partitioning of Genomic Variance and Genome-Wide Association Study for Carcass Traits in Korean Hanwoo Cattle Using Imputed Sequence Level SNP Data vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00217
- Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef vol.20, pp.1, 2019, https://doi.org/10.1186/s12864-019-5518-3
- Genome-Wide Association Study Identifies Genomic Loci Affecting Filet Firmness and Protein Content in Rainbow Trout vol.10, pp.None, 2019, https://doi.org/10.3389/fgene.2019.00386
- Genome association of carcass and palatability traits from Bos indicus-Bos taurus crossbred steers within electrical stimulation status and correspondence with steer temperament 3. Aroma and flavor at vol.233, pp.None, 2014, https://doi.org/10.1016/j.livsci.2020.103943
- A Gene-Set Enrichment and Protein–Protein Interaction Network-Based GWAS with Regulatory SNPs Identifies Candidate Genes and Pathways Associated with Carcass Traits in Hanwoo Cattle vol.11, pp.3, 2014, https://doi.org/10.3390/genes11030316
- Haplotype-Based Genome-Wide Association Study and Identification of Candidate Genes Associated with Carcass Traits in Hanwoo Cattle vol.11, pp.5, 2014, https://doi.org/10.3390/genes11050551
- Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle vol.10, pp.10, 2014, https://doi.org/10.3390/ani10101836