References
- Hocquette JF, Gondret F, Baeza E, et al. IMF in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal 2010;4:303-19. https://doi.org/10.1017/S1751731109991091
- Fernandez X, Monin G, Talmant A, et al. Influence of intramuscular fat content on the quality of pig meat-1. Composition of the lipid fraction and sensory characteristics of m. longissimus lumborum. Meat Sci 1999;53:59-65. https://doi.org/10.1016/S0309-1740(99)00037-6
- Chen JN, Jiang YZ, Cen WM, et al. Distribution of H-FABP and ACSL4 gene polymorphisms and their associations with IMF and backfat thickness in different pig populations. Genet Mol Res 2014;13:6759-72.
- Wang X, Xue C, Wang X, et al. Differential display of expressed genes reveals a novel function of SFRS18 in regulation of intramuscular fat deposition. Int J Biol Sci 2009;5:28-33.
- de Koning DJ, Janss LL, Rattink AP, et al. Detection of quantitative trait loci for backfat thickness and Intramuscular Fat Content in pigs (Sus scrofa). Genetics 1999;152:1679-90.
- Paszek AA, Wilkie PJ, Flickinger GH, et al. Interval mapping of carcass and meat quality traits in a divergent swine cross. Anim Biotechnol 2009;12:155-65.
- Ovilo C, Perez-Enciso M, Barragan C, et al. A QTL for intramuscular fat and backfat thickness is located on porcine chromosome 6. Mamm Genome 2000;11:344-6. https://doi.org/10.1007/s003350010065
- Xiang Z, Matthew, S. Genome-wide efficient mixed-model analysis for association studies. Nat Genet 2012;44:821-4. https://doi.org/10.1038/ng.2310
- Yang J, Lee SH, Goddard ME, et al. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 2011;88:76-82. https://doi.org/10.1016/j.ajhg.2010.11.011
- Suzuki K, Irie M, Kadowaki H, et al. Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and IMF. J Anim Sci 2005;83:2058-65. https://doi.org/10.2527/2005.8392058x
- Larzul C, Lefaucheur L, Ecolan P, et al. Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass, and meat quality traits in large white pigs. J Anim Sci 1997;75:3126-37. https://doi.org/10.2527/1997.75123126x
- Lo LL, McLaren DG, McKeith FK, et al. Genetic analyses of growth, real-time ultrasound, carcass, and pork quality traits in Duroc and Landrace pigs: II. Heritabilities and correlations. J Anim Sci 1992;70:2387-96. https://doi.org/10.2527/1992.7082387x
- Newcom DW, Baas TJ, Schwab CR, et al. Relationship between Backfat depth and its individual layers and intramuscular fat percentage in swine [Internet]. c2004 [cited 2017 Mar 10]. Animal Industry Report. Available from: http://lib.dr.iastate.edu/ans_air/vol650/iss1/103
- Pearson G, Robinson F, Gibson TB, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001;22:153-83.
- Sakaue H, Ogawa W, Nakamura T, et al. Role of MAPK phosphatase-1 (MKP-1) in adipocyte differentiation. J Biol Chem 2004;279:39951-7. https://doi.org/10.1074/jbc.M407353200
- Aouadi M, Jager J, Laurent K, et al. p38MAP Kinase activity is required for human primary adipocyte differentiation. FEBS Lett 2007;581:5591-6. https://doi.org/10.1016/j.febslet.2007.10.064
- Moser M, Binder O, Wu Y, et al. BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol Cell Biol 2003;23:5664-79. https://doi.org/10.1128/MCB.23.16.5664-5679.2003
- Tseng Y, Tong-Chuan H. Bone morphogenetic proteins and adipocyte differentiation. Cellscience Rev 2007;3:342-60.
- Bachner D, Ahrens M, Schroder D, et al. Bmp-2 downstream targets in mesenchymal development identified by subtractive cloning from recombinant mesenchymal progenitors (C3H10T1/2). Dev Dyn 1998; 213:398-411. https://doi.org/10.1002/(SICI)1097-0177(199812)213:4<398::AID-AJA5>3.0.CO;2-T
- Wang EA, Israel DI, Kelly S, et al. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors 1993;9:57-71. https://doi.org/10.3109/08977199308991582
- Nakae J, Kitamura T, Kitamura Y, et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 2003;4:119-29.
- Wang Y, Sul HS. Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9. Cell Metab 2009;9:287-302.
- Shirakata Y, Ishii K, Yagita H, et al. Distinct subcellular localization and substrate specificity of extracellular signal-regulated kinase in B cells upon stimulation with IgM and CD40. J Immunol 1999;163:6589-97.
- Medgyesi D, Hobeika E, Biesen R, et al. The protein tyrosine phosphatase PTP1B is a negative regulator of CD40 and BAFF-R signaling and controls B cell autoimmunity. J Exp Med 2014;211:427-40.
- Ukkola O, Rankinen T, Lakka T, et al. Protein tyrosine phosphatase 1B variant associated with fat distribution and insulin metabolism. Obes Res 2005;13:829-34. https://doi.org/10.1038/oby.2005.95
- Griffiths, Anthony JF. An introduction to genetic analysis. New York, America: Macmillan; 2005.
- Visscher PM, Hill WG, Wray NR. Heritability in the genomics era-concepts and misconceptions. Nat Rev Genet 2008;9:255-66.
- Falconer DS. Introduction to quantitative genetics. New York, America: Pearson Education India; 1975.
- Daszkiewicz T, Bak T, Denaburski, J. Quality of pork with a different intramuscular fat (IMF) content. Pol J Food Nutr Sci 2005;14:31-5.
- Ahn J, Lee J. X chromosome: X inactivation. Nat Educ 2008;1:24.
- Tukiainen T, Pirinen M, Sarin AP, et al. Chromosome X-wide association study identifies Loci for fasting insulin and height and evidence for incomplete dosage compensation. PLoS Genet 2014;10:E1004127. https://doi.org/10.1371/journal.pgen.1004127
- Visscher PM, Hemani G, Vinkhuyzen AA, et al. Statistical power to detect genetic (co) variance of complex traits using SNP data in unrelated samples. PLoS Genet 2014;10;e1004269.
Cited by
- Identification and Functional Analysis of Long Intergenic Non-coding RNAs Underlying Intramuscular Fat Content in Pigs vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00102
- Identification of Marbling Gene Loci in Commercial Pigs in Canadian Herds vol.8, pp.8, 2018, https://doi.org/10.3390/agriculture8080122
- Single-Locus and Multi-Locus Genome-Wide Association Studies for Intramuscular Fat in Duroc Pigs vol.10, pp.None, 2018, https://doi.org/10.3389/fgene.2019.00619
- Data Mining and Validation of AMPK Pathway as a Novel Candidate Role Affecting Intramuscular Fat Content in Pigs vol.9, pp.4, 2018, https://doi.org/10.3390/ani9040137
- Tissue Engineering for Clean Meat Production vol.3, pp.None, 2019, https://doi.org/10.3389/fsufs.2019.00046
- NTN1 Affects Porcine Intramuscular Fat Content by Affecting the Expression of Myogenic Regulatory Factors vol.9, pp.9, 2018, https://doi.org/10.3390/ani9090609
- Differential Metabolomics Profiles Identified by CE-TOFMS between High and Low Intramuscular Fat Amount in Fattening Pigs vol.10, pp.8, 2018, https://doi.org/10.3390/metabo10080322
- miR-34a regulates adipogenesis in porcine intramuscular adipocytes by targeting ACSL4 vol.21, pp.1, 2018, https://doi.org/10.1186/s12863-020-0836-7
- Genome-Wide Association Study of Meat Quality Traits in a Three-Way Crossbred Commercial Pig Population vol.12, pp.None, 2018, https://doi.org/10.3389/fgene.2021.614087
- Accurate prediction and genome‐wide association analysis of digital intramuscular fat content in longissimus muscle of pigs vol.52, pp.5, 2021, https://doi.org/10.1111/age.13121