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INTRODUCTION 

 

Pork is the most widely consumed meat, accounting for 

50% of daily meat protein intake, globally (Davis and Lin, 

2005). Genetic selection using best linear unbiased 

prediction (BLUP) methodologies, so far, have resulted in a 

number of successes in improving different pork quality 

parameters (Leeds, 2005; Sellier, 1998). Various studies have 

been devoted to the estimation of genetic parameters for pork 

quality traits to use in selection programs (Leeds, 2005). C.R. 

Henderson around 1950 developed the mixed model 

equations involving BLUP (Henderson, 1975; Jiang, 1997).  

Genomic selection aims at making selection decisions 

based on breeding values predicted using genome-wide 

marker data (Meuwissen et al., 2001). There are two general 

categories of BLUP methods: GRM-based genomic-best 

linear unbiased prediction (G-BLUP), and single nucleotide 

polymorphism (SNP)-best linear unbiased prediction (SNP-

BLUP). Genomic relationship matrix (GRM) exploits the 

elements of the realized proportion of the genome that two 

individuals share (Legarra et al., 2009; Goddard et al., 2011). 

The big compromise of G-BLUP and SNP-GBLUP is single 

nucleotide polymorphism-genomic best linear unbiased 

prediction (SNP-GBLUP) (Lee et al., 2014b). The breeding 
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values of the SNP-GBLUP are nearly identical to the G-

BLUP. However, it predicts the SNP effects of the given traits. 

It is an approach unlike the single step BLUP (SS-BLUP) 

which finds the SNP effects iteratively (Fernando et al., 

2014). 

Genome-wide association study (GWAS) uses genetic 

variants with traits of interest and it can estimate the p-value 

of each SNP in a given complex trait (Bolormaa et al., 2013; 

Lee et al., 2014a). For the analysis of each SNPs’ P-value, 

we used the PLINK linear regression model (Purcell et al., 

2007). Then we used the SNP-GBLUP (Lee et al., 2014b).  

The missing heritability has been the problem which 

must be solved in GWAS and BLUP analyses (Eichler et al., 

2010). It indicates that the narrow-sense heritability cannot 

be achieved satisfactorily in complex diseases and traits with 

a complex inheritance such as human height (Eichler et al., 

2010; Yang et al., 2010). BLUP traditionally uses total 

genotyped SNPs. However, it has not yet solved the missing 

heritability problem. We tried to combine the GWAS and 

BLUP method to complement it. We analyzed the BLUP by 

using only SNPs with p-value under 0.01 in GWAS.   

 

MATERIALS AND METHODS 

 

Ethics statement 

The study protocol and the standard operating procedures 

(No. 2009-077, C-grade) of Berkshire pigs were reviewed 

and approved by National Institute of Animal Science’s 

Institutional Animal Care and Use Committee.   

 

Data preparation 

We used data from 702 (365 male, 204 female, 133 

castrated male) Berkshire pigs. Animals were raised with the 

same commercial diet from the Dasan experimental farm in 

Namwon, Korea. The genomic DNAs of 702 individuals 

were genotyped using Illumina Porcine 60 K SNP Beadchip 

(Illumina, San Diego, CA, USA) following the standard 

protocol. A total number of 44,345 genotyped SNPs were 

filtered using quality-control processes with MAF (minor 

allele frequency (MAF) (<0.05), Hardy-Weinberg 

equilibrium (HWE) (p<0.001) and missing data (>0.01 

missing) which resulted 36,896 autosomal SNPs. 

A total of 8 meat quality traits were used for the analysis. 

The traits included carcass weight (CWT), back fat thickness 

(BF), intramuscular fat content (fat), protein content, Shear 

force (SF), water holding capacity (WHC) and color (L* and 

A*). Carcass weight was measured immediately after 

slaughter. BF and color were measured from the longissimus 

dorsi muscle between 10th and 11th rib. Intramuscular fat 

content was measured using chemical fat extraction 

procedures. WHC (%) was measured as a difference between 

moisture content (%) and expressible water (EW; %). 

General indication of lightness and degree of green-redness 

of meat color were measured referred to Minolta L (MC_L, 

Commission Internationale de I’Eclairage [CIE] L* color 

space) and Minolta A (MC_A, CIE a* color space), 

respectively. Shear force was measured using the Warner-

Bratzler shear force meter (G-R Elec. Mfg. Co., Manhattan, 

New York, USA). In each sex group (365 male, 204 female, 

and 133 castrated male), we standardized the values to z-

score separately for GWAS.  

 

Data analysis 

Linear regression GWAS: We used the linear regression 

model in PLINK software (additive option) for the genome-

wide association (GWA) analysis with the sex adjusted data. 

The P-value less than the stringent level of 0.01 was selected 

for genome-wide significant autosomal SNPs.  

The BLUP solution and SNP-GBLUP: The mixed model 

used to estimate the breeding values includes BLUP and best 

linear unbiased estimation. These models estimate the fixed 

effects such as sex and predicts the random effects such as 

SNPs for a given quantitative phenotype. The solution of the 

model usually can be found by using the maximum 

likelihood estimation (MLE) of the probability density 

function (pdf) of the model. The mixed model and its 

solution used are presented as follows: 

 

y = Xb+Zu+e                              (1) 
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Where y is the vector of phenotypic values, X and Z are 

the design matrices, b and u are vectors of fixed and random 

effects, respectively. The random effects and residual errors 

are assumed to be normally distributed. These multivariate 

normal distributions usually are notated as 

)GMVN(0,  ~u u
 and R)MVN(0,~e  where MVN 

are denoted as multivariate normal distribution.  

The identical solution of MLE of mixed model is the 

generalized least squares (GLS). To compare the estimated 

breeding values (EBV) of the total SNPs with trimmed SNPs 

(unadjusted cutoff p-value 0.01), we used the G-BLUP which 

adopts the genomic relationship matrix (GRM) with total 

pruned SNPs (36,896 SNPs) and SNP-GBLUP which utilizes 

the SNP-SNP relationship matrix with trimmed SNPs (Lee et 

al., 2014b). The GRM was obtained using R package 

“rrBLUP” (Endelman, 2011). For the GRM of the trimmed 

SNP’s analysis, we used the highly significant SNPs 

(p<0.01). The GLS solution is as follows: 

 

b̂ = (X′𝑉−1𝑋)−1X′𝑉−1𝑦    𝑎𝑛𝑑  𝑉 = 𝑍𝐺𝑢𝑍′ + 𝑅   (3) 
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�̂� = G𝑢Z′𝑉−1 (𝑦 − 𝑋�̂�)                       (4) 

 

Where b̂  is the estimated fixed effects and �̂�  is the 

estimated random effects.  

The SNP-SNP relationship matrix and its inverse: The 

inverse of the SNP-SNP relationship matrix is depicted as in 

the below (Lee et al., 2014b):  

 

𝐺𝑢
−1 = 𝑍𝑇𝐺−1𝑍                            (5) 

 

Where G matrix is the genomic relationship matrix. To 

calculate the Gu matrix, i.e., SNP-SNP relationship matrix, 

we applied the Sherman-Morrison-Woodbury lemma 

(Sherman and Morrison, 1950; Woodbury, 1950).  

 

(A + YG𝑍∗)−1 = 𝐴−1 −  𝐴−1 𝑌(𝐺−1 + 𝑍∗𝐴−1 𝑌)−1𝑍∗𝐴−1  (6) 

 

Where G and A are both be invertible, and A+YGZ* are 

invertible if and only if 𝐺−1 + 𝑍∗𝐴−1 𝑌 are invertible. This 

formula reduces the computation time to calculate the SNP-

SNP relationship matrix. We used A as identity matrix (I 

matrix) and the formula we used was as follows: 

 

(I + 𝐺𝑢
−1)−1 = (I + 𝑍𝑇𝐺−1𝑍)−1 = I −  𝑍𝑇 (𝐺 + 𝑍𝑍𝑇 )−1𝑍  (7) 

 

RESULTS 

 

We first performed GWAS and identified the significant 

SNPs (p<0.01) associated with the phenotypic traits of 

interest (Table 1). The 859 (MC_L), 1,028 (CWT), 2,014 

(Protein), 1,478 (BF), 2,580 (SF), 3,659 (Fat), 5,830 (WHC) 

and 3,210 (MC_A) SNPs were extracted and finally involved 

in the BLUP analysis. 

In general, the results of SNP-GBLUP analyzed with 

trimmed SNPs mentioned above have higher heritability than 

those of G-BLUP with total SNPs as shown in Table 1. On 

the contrary, SF, fat, WHC and MC_A cases did not achieve 

satisfactory results and showed a small increase of 

heritability. We considered that the reason was failing to find 

the appropriate number of SNPs. The traits may have more 

quantitative trait loci (QTL) regions than those predicted as 

p-value <0.01. Because the most important part of our 

analysis was the number of SNPs, we regarded that the 

criteria of P-value in GWAS can be modified in the cases of 

SF, fat, WHC, and MC_A for a better performance of BLUP. 

Figure 1 shows the plot of genomic estimated breeding 

value (GEBV) and phenotypic values for quality traits. In the 

plot, the colored ones refer to the trimmed SNPs’ cases while 

the black dots refer to the total SNPs. It shows that the slopes 

of the colored ones (trimmed SNPs’ cases) were higher than 

those of the black ones, which indicated the higher 

heritability and better performances in trimmed cases. Figure 

2 and 3 show the Manhattan plot of –log 10 of absolute 

values of SNP effects across chromosomes. The plots 

indicate the aggregates of SNPs and SNP effects on each 

chromosome. The aggregates may imply the putative QTL 

regions. Specifically, Figure 2 shows the MC_L, CWT, 

protein, BF traits cases and Figure 3 shows the SF, fat, WHC 

and MC_A traits cases which showed the great and small 

increases of heritability, respectively. Figure 4 indicates K-

means clustering (K = 4) of the phenotypic values and BLUP 

results of the analyzed Berkshire eight pork quality based on 

the 1st and 2nd discriminant functions. We used the R 

package “fpc” (Hennig, 2010). The plot of the trimmed SNPs’ 

was closer than that of the total SNPs when compared with 

the plot of phenotypic values. These kinds of plots can assist 

the breeders in selecting better-performed Berkshire pigs. 

 

DISCUSSION 

 

The features of the genome-wide association study  

In the field of livestock science and animal breeding, 

mapping of QTL has been widely used to detect genetic 

variation responsible for economically important traits. 

However, due to the low density of markers and the 

confidence interval of QTL mapping studies, it has been 

difficult to identify genetic variation affecting complex traits 

(Soller et al., 2006). GWAS, also known as common-variant 

association study, typically focuses on the association 

between genomic variants and phenotypic traits especially 

developed in human disease study (Feero et al., 2010). 

GWAS has been extended for use in domestic animal 

Table 1. The table of the fixed effects (male, female, and castrated male), heritability and number of SNPs used 

SNP-GBLUP MC_L CWT Protein BF SF Fat WHC MC_A 

# SNPs 859 1,028 2,014 1,478 2,580 3,659 5,830 3,210 

Male 48.73 86.31 24.00 25.26 2.89 2.80 59.29 6.15 

Female 48.15 86.00 24.00 23.03 3.14 2.41 57.84 6.10 

Castrated male 48.59 85.26 23.86 28.10 2.51 3.51 60.48 6.35 

ℎ2 (trimmed)1 32 24 42 37 29 39 47 35 

ℎ2 (total)1 6 9 26 20 20 37 43 29 

SNP-GBLUP, single nucleotide polymorphism-genomic best linear unbiased prediction; MC_L, Minolta Commission Internationale de I’Eclairage L* color 

space; CWT, carcass weight; BF, back fat thickness; SF, Shear force; Fat, intramuscular fat content; WHC, water holding capacity; MC_A,  Minolta 

Commission Internationale de I’Eclairage a* color space. 

It shows the heritability (%) of trimmed highly significant SNPs (p<0.01) is greater than that of total SNPs’ cases in all traits. 
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Figure 1. Plot of Berkshire genomic estimated breeding values (GEBVs) against to the phenotypic values. Black spots refer to total SNPs’ 

cases and colored spots refer to the trimmed SNPs’ cases. Because the slopes of colored ones were higher than black ones, the genomic 

estimated breeding values (GEBVs) of the trimmed cases can be more accurate than those of total SNPs’ in terms of heritability. CWT, 

carcass weight; BF, back fat thickness; MC_L, Minolta L Commission Internationale de I’Eclairage L* color space; MC_A, Minolta 

Commission Internationale de I’Eclairage a* color space; WHC, water holding capacity; Fat, intramuscular fat content; SF, Shear force; 

SNP, single nucleotide polymorphism. 

 

 

Figure 2. The Manhattan plot of –log10 of absolute values of SNP effects across chromosomes. It indicates the aggregates of the SNPs 

and SNP effects as predicted in GWAS. Each dot can represent the SNPs in the putative quantitative trait loci (QTL) regions. The method 

was single nucleotide polymorphism-genomic best linear unbiased prediction (SNP-GBLUP). SNP-GBLUP can predict the SNP effects. 

GWAS, genome wide association study; MC_L, Minolta L Commission Internationale de I’Eclairage L* color space; CWT, carcass weight; 

BF, back fat thickness. 
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Figure 3. The Manhattan plot of –log10 of absolute values of SNP effects across chromosomes. It shows the aggregates of the SNPs and 

SNP effects as predicted in GWAS. Each dot can represent the SNPs in the putative QTL regions. The method was single nucleotide 

polymorphism-genomic best linear unbiased prediction (SNP-GBLUP). GWAS, genome wide association study; SF, Shear force; Fat, 

intramuscular fat content; WHC, water holding capacity; MC_A, Minolta Commission Internationale de I’Eclairage a* color space. 

 

 
Figure 4. The plot of the 1st and the 2nd discriminant functions of Berkshire eight port quality traits and corresponding genomic estimated 

breeding values (GEBVs) of total SNPs (genomic-best linear unbiased prediction; G-BLUP) and trimmed SNPs (single nucleotide 

polymorphism-genomic best linear unbiased prediction; SNP-GBLUP). These plots represent the similarity between phenotypic values 

and GEBVs of the trimmed SNPs (p<0.01) as compared to those of the total SNPs. To classify individuals using the GEBVs can be an aid 

to the Berkshire breeders. 
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genetics since genomic sequences of livestock have become 

available, and the large scale of genomic variants (SNPs, 

Indel and CNV) were discovered. Using sequence variation, 

GWAS can detect the causal mutation responsible for the 

economic traits underlying in QTL (Zhang et al., 2012a). 

This was the basis of our study because GWAS could detect 

the putative QTL regions and it could improve the BLUP.  

 

Genome-wide association study and its application to the 

best linear unbiased prediction 

Zhang et al. reported that GWAS improved the accuracy 

of genomic selection (GS) (Zhang et al., 2014). They asserted 

the superiority of BLUP|GA model over G-BLUP, which 

used the QTL counts and obtained p-value from GWAS. 

BLUP|GA model requires prior knowledge about which 

SNPs belonged to QTL regions. We further assert that results 

of GWAS can contain the information about the QTL regions’ 

SNPs. Otherwise, it can contain the information about the 

QTL regions via linkage disequilibrium. Specifically, the 

estimated heritability of MC_L and CWT were highly 

improved with 3 to 5 fold increase. This may arise because 

of the detection of putative QTL regions by GWAS. The 

combination of GWAS and SNP-GBLUP can make it 

possible to estimate the QTL-related SNP effects and GEBVs. 

The number of analyzed SNPs was 2% to 10% of the total 

SNPs. We considered that as the number of QTL varies, the 

analyzable SNPs varies. Thus, we adopted the criteria as P-

value of GWAS results. BLUP of trimmed SNPs were better 

than that of total SNPs in terms of heritability and GEBVs.  

 

Missing heritability and trimming of single nucleotide 

polymorphisms 

The missing heritability problem can occur in the 

association of the traits and genetic markers. In GWAS, the 

difficulty in analyzing complex diseases and genetic traits 

such as human height have emphasized the missing 

heritability problem (Manolio et al., 2009; Yang et al., 2010). 

Furthermore, there has been the missing heritability in the 

BLUP analysis. Many BLUP analyses have not fulfilled the 

narrow-sense heritability. Thus, the GEBVs could not be 

predicted accurately. The application of GWAS to the BLUP 

was a success in MC_L, CWT, protein, BF analyses and 

partly a success in MC_L, CWT, protein BF analyses. 

However, the number of SNPs required to predict the GEBVs 

better, can be a controversy. 

The genomic relationship matrix, GRM statistically a 

variance-covariance matrix, uses the whole SNP information. 

On the contrary, partial GRM which uses the SNP 

information in part was a major concern in our study. We 

used the partial GRM because it can be variance-covariance 

matrix. The partial GRM which was constructed by using the 

SNP information in part (p<0.01 in GWAS) cannot matter 

because it can be a variance-covariance matrix. 

 

IMPLICATIONS 

 

We applied the Genome-wide Association Study (GWAS) 

to complement the best linear unbiased prediction (BLUP). 

The criteria of selected SNPs in the BLUP analysis was p-

value <0.01 in GWAS. We concluded that analysis of BLUP 

with SNPs (p-value <0.01) had a better performance than that 

of total SNPs in terms of narrow-sense heritability. However, 

whether the criteria of p-value can predict GEBVs better, 

remains a controversy for the future. 
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