• Title/Summary/Keyword: Genetic Progress

Search Result 225, Processing Time 0.029 seconds

Recent research progress on acid-growth theory (산-생장설에 대한 최근 연구 동향)

  • Lee, Sang Ho
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.405-410
    • /
    • 2016
  • Auxins are essential in plant growth and development. The auxin-stimulated elongation of plant cells has been explained by the "acid-growth theory", which was proposed forty years ago. According to this theory, the auxin activates plasma membrane $H^+-ATPase$ to induce proton extrusion into the apoplast, promoting cell expansion through the activation of cell wall-loosening proteins such as expansins. Even though accepted as the classical theory of auxin-induced cell growth for decades, the major signaling components comprising this model were unknown, until publication of recent reports. The major gap in the acid growth theory is the signaling mechanism by which auxin activates the plasma membrane $H^+-ATPase$. Recent genetic, molecular, and biochemical approaches reveal that several auxin-related molecules, such as TIR1/AFB AUX/IAA coreceptors and SMALL AUXIN UP RNA (SAUR), serve as important components of the acid-growth model, phosphorylating and subsequently activating the plasma membrane $H^+-ATPase$. These researches reestablish the four-decade-old theory by providing us the detailed signaling mechanism of auxininduced cell growth. In this review, we discuss the recent research progress in auxin-induced cell elongation, and a set of possible future works based on the reestablished acid-growth model.

Applications of CRISPR technologies to the development of gene and cell therapy

  • Chul-Sung Park;Omer Habib;Younsu Lee;Junho K. Hur
    • BMB Reports
    • /
    • v.57 no.1
    • /
    • pp.2-11
    • /
    • 2024
  • Advancements in gene and cell therapy have resulted in novel therapeutics for diseases previously considered incurable or challenging to treat. Among the various contributing technologies, genome editing stands out as one of the most crucial for the progress in gene and cell therapy. The discovery of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and the subsequent evolution of genetic engineering technology have markedly expanded the field of target-specific gene editing. Originally studied in the immune systems of bacteria and archaea, the CRISPR system has demonstrated wide applicability to effective genome editing of various biological systems including human cells. The development of CRISPR-based base editing has enabled directional cytosine-to-thymine and adenine-to-guanine substitutions of select DNA bases at the target locus. Subsequent advances in prime editing further elevated the flexibility of the edit multiple consecutive bases to desired sequences. The recent CRISPR technologies also have been actively utilized for the development of in vivo and ex vivo gene and cell therapies. We anticipate that the medical applications of CRISPR will rapidly progress to provide unprecedented possibilities to develop novel therapeutics towards various diseases.

Conversion of Ginsenoside $Rb_1$ by Ginseng Soil Bacterium Cellulosimicrobium sp. Gsoil 235 According to Various Culture Broths (인삼 토양 미생물 Cellulosimicrobium sp. Gsoil 235의 배지조성에 따른 Ginsenoside $Rb_1$ 전환)

  • Na, Ju-Ryun;Kim, Yu-Jin;Kim, Se-Hwa;Kim, Ho-Bin;Shim, Ju-Sun;Kim, Se-Young;Yang, Deok-Chun
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.55-61
    • /
    • 2009
  • Ginseng saponins (a secondary metabolite, termed ginsenosides) are the principal bioactive ingredients of ginseng, and modification of the sugar chains may markedly change the its biological activity. One of soil bacteria having $\beta$-glucosidase (to transform ginsenoside $Rb_1$) activity was isolated from soil of a ginseng field in Daejeon. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Cellulosimicrobium, with highest sequence similarity (99.7%) to Cellulosimicrobium funkei ATCC BAA-$886^T$. The strain, Gsoil 235, could transform ginsenoside $Rb_1$ into Rd, $Rg_3$ and 3 of un-known ginsenosides by the analyses of TLC, HPLC. By investigating its deglycosylation progress, the optimal broth for, $\beta$-glucosidase was nutrient broth (In 48 hours, almost ginsenoside $Rb_1$ could be transformed into minor ginsenosides). On the contrary, the optimal broth for growth was determined as trypic soy broth (TSB).

Genetic parameters for milk yield in imported Jersey and Jersey-Friesian cows using daily milk records in Sri Lanka

  • Samaraweera, Amali Malshani;Boerner, Vinzent;Cyril, Hewa Waduge;Werf, Julius van der;Hermesch, Susanne
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1741-1754
    • /
    • 2020
  • Objective: This study was conducted to estimate genetic parameters for milk yield traits using daily milk yield records from parlour data generated in an intensively managed commercial dairy farm with Jersey and Jersey-Friesian cows in Sri Lanka. Methods: Genetic parameters were estimated for first and second lactation predicted and realized 305-day milk yield using univariate animal models. Genetic parameters were also estimated for total milk yield for each 30-day intervals of the first lactation using univariate animal models and for daily milk yield using random regression models fitting second-order Legendre polynomials and assuming heterogeneous residual variances. Breeding values for predicted 305-day milk yield were estimated using an animal model. Results: For the first lactation, the heritability of predicted 305-day milk yield in Jersey cows (0.08±0.03) was higher than that of Jersey-Friesian cows (0.02±0.01). The second lactation heritability estimates were similar to that of first lactation. The repeatability of the daily milk records was 0.28±0.01 and the heritability ranged from 0.002±0.05 to 0.19±0.02 depending on day of milk. Pearson product-moment correlations between the bull estimated breeding values (EBVs) in Australia and bull EBVs in Sri Lanka for 305-day milk yield were 0.39 in Jersey cows and -0.35 in Jersey-Friesian cows. Conclusion: The heritabilities estimated for milk yield in Jersey and Jersey-Friesian cows in Sri Lanka were low, and were associated with low additive genetic variances for the traits. Sire differences in Australia were not expressed in the tropical low-country of Sri Lanka. Therefore, genetic progress achieved by importing genetic material from Australia can be expected to be slow. This emphasizes the need for a within-country evaluation of bulls to produce locally adapted dairy cows.

Possibility of the Use of Public Microarray Database for Identifying Significant Genes Associated with Oral Squamous Cell Carcinoma

  • Kim, Ki-Yeol;Cha, In-Ho
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • There are lots of studies attempting to identify the expression changes in oral squamous cell carcinoma. Most studies include insufficient samples to apply statistical methods for detecting significant gene sets. This study combined two small microarray datasets from a public database and identified significant genes associated with the progress of oral squamous cell carcinoma. There were different expression scales between the two datasets, even though these datasets were generated under the same platforms - Affymetrix U133A gene chips. We discretized gene expressions of the two datasets by adjusting the differences between the datasets for detecting the more reliable information. From the combination of the two datasets, we detected 51 significant genes that were upregulated in oral squamous cell carcinoma. Most of them were published in previous studies as cancer-related genes. From these selected genes, significant genetic pathways associated with expression changes were identified. By combining several datasets from the public database, sufficient samples can be obtained for detecting reliable information. Most of the selected genes were known as cancer-related genes, including oral squamous cell carcinoma. Several unknown genes can be biologically evaluated in further studies.

High Throughput Screening of Antifungal Metabolites Against Colletotrichum gloeosporioides

  • Ahn, Il-Pyung;Kim, Soon-Ok;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2008
  • Colletotrichum gloeosporioides forms an appressorium, a specialized infection structure, to infect its hosts. Among 400 and 600 culture filtrates from fungi and class Actinomycetes, six methanol extracts (A5005, A5314, A5387, A5560, A5597, and A5598) from the class Actinomycetes significantly inhibited appressorium formation in C. gloeosporioides infecting pepper fruits in a dose-dependent manner, while conidial germination was slightly enhanced. Two (A5005 and A5560) of them also exhibited distinctive inhibitory effect on the disease progress of pepper anthracnose. Water fractions of both culture filtrates also specifically inhibited appressorium formation in C. gloeosporioides and pepper anthracnose disease. Inhibition of appressorium formation by culture filtrate of A5005 was partially restored by the exogenous calcium. This results suggests that chemicals within A5005 extents its biological activity through disturbance of intracellular $Ca^{2+}$ regulation during prepenetration morphogenesis by C. gloeosporioides. Together, cell-based and target-oriented screening system used in this study should be applicable for other plant pathogenic fungi prerequisite appressorium formation to infect their hosts.

Application of genomics into rice breeding

  • Ando, Ikuo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.13-13
    • /
    • 2017
  • By the progress of genome sequencing, infrastructures for marker-assisted breeding (MAB) of rice came to be established. Fine mapping and gene isolation have been conducted using the breeding materials derived from natural variations and artificial mutants. Such genetic analysis by the genome-wide dense markers provided us the knowledge about the many genes controlling important traits. We identified several genes or quantitative trait loci (QTL) for heading date, blast resistance, eating quality, high-temperature stress tolerance, and so on. NILs of each gene controlling heading date contribute to elongate the rice harvest period. Determination of precise gene location of blast resistance gene pi21, allowed us to overcome linkage drag, co-introduction of undesirable eating quality. We could also breed the first practical rice cultivar in Japan with a brown planthopper resistance gene bph11 in the genetic back-ground of an elite cultivar. Discovery of major and minor QTLs for good eating quality allowed us to fine-tune of eating quality according to the rice planting area or usage of rice grain. Many rice cultivars have bred efficiently by MAB for several traits, or by marker-assisted backcross breeding through chromosome segment substitution lines (CSSLs) using genetically diverse accessions. We are also systematically supporting the crop breeding of other sectors by MAB or by providing resources such as CSSLs. It is possible to pyramid many genes for important traits by using MAB, but is still difficult to improve the yielding ability. We are performing a Genomic Selection (GS) for improvement of rice biomass and grain yield. We are also trying to apply the genome editing technology for high yield rice breeding.

  • PDF

Recent advances in tissue culture and genetic transformation system of switchgrass as biomass crop (바이오에너지 개발용 스위치그라스의 조직배양 및 형질전환 최근 연구동향)

  • Lee, Sang Il;Lim, Sung-Soo;Roh, Hee Sun;Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.185-191
    • /
    • 2013
  • Over the past decades, carbon dioxide concentration of the atmosphere of the world has increased significantly, and thereby the greenhouse effect has become a social issue. To solve this problem, new renewable energy sources including solar, hydrogen, geothermal, wind and bio-energy are suggested as alternatives. Among these new energy sources, bio-energy crops are widely introduced and under rapid progress. For example, corn and oilseed rape plants are used for the production of bio-ethanol and bio-diesel, respectively. However, grain prices has increased severely because of the use of corn for bio-ethanol production. Therefore, non-edible switchgrass draws attention as an alternative source for bio-ethanol production in USA. This review describes the shortage of fossil energy and an importance of switchgrass as a bio-energy crop. Also, some characteristics of its major cultivars are introduced including growth habit, total output of biomass yields. Furthermore, biotechnological approaches have been conducted to improve the productivity of switchgrass using tissue culture and genetic transformation.

Peak ground acceleration attenuation relationship for Mazandaran province using GEP algorithm

  • Ahangari, Hamed Taleshi;Jahani, Ehsan;Kashir, Zahra
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.403-410
    • /
    • 2018
  • The choice of attenuation relationships is one of the most important parts of seismic hazard analysis as using a different attenuation relationship will cause significant differences in the final result, particularly in near distances. This problem is responsible for huge sensibilities of attenuation relationships which are used in seismic hazard analysis. For achieving this goal, attenuation relationships require a good compatibility with the target region. Many researchers have put substantial efforts in their studies of strong ground motion predictions, and each of them had an influence on the progress of attenuation relationships. In this study, two attenuation relationships are presented using seismic data of Mazandaran province in the north of Iran by Genetic Expression Programming (GEP) algorithm. Two site classifications of soil and rock were considered regarding the shear wave velocity of top 30 meters of site. The quantity of primary data was 93 records; 63 of them were recorded on rock and 30 of them recorded on soil. Due to the shortage of records, a regression technique had been used for increasing them. Through using this technique, 693 data had been created; 178 data for soil and 515 data for rock conditions. The Results of this study show the observed PGA values in the region have high correlation coefficients with the predicted values and can be used in seismic hazard analysis studies in the region.

Estimation of the Rubber Material Property by Successive Zooming Genetic Algorithm (연속적 확대 유전기법을 이용한 고무물성계수의 산출)

  • Kwon Youngdoo;Kim Jaeyong;Lee Jaekwan;Kwon Hyunwook;Han Insik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • Nowadays, various kind of rubber-like materials are used in industry. These are usually installed in automobiles, trains, etc. They work as dampers or important parts in the system, and the applications for rubber-like materials are increasing. In the past days, rubber engineers and designers predicted rubber material behaviors by the analytic method for limited problems. With the progress of digital computers, Finite Element Methods is widely used for analyzing the rubber-like materials. The popular methods predicting rubber material property are curve fitting and least square method, but there are some problems such as low precision and tedious solving process. Here, we introduce a method estimating rubber material property by successive zooming genetic algorithm(SZGA). The proposed algorithm offers more precise rubber property. To demonstrate the effectiveness of the proposed algorithm, we compared this method with Haines & Wilson's method, MARC, ABAQUS.