Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (grant numbers: 2021M3A9I4024452, 2023R1A2C1005623, 2023R1A6C101A009, RS-2023-00261114) and the Korea Health Industry Development Institute (KHIDI) grant funded by the Ministry of Health & Welfare (grant number: HI22C0636) and to J.K.H.
References
- Kim H and Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15, 321-334 https://doi.org/10.1038/nrg3686
- Lee SH, Park YH, Jin YB, Kim SU and Hur JK (2020) CRISPR diagnosis and therapeutics with single base pair precision. Trends Mol Med 26, 337-350 https://doi.org/10.1016/j.molmed.2019.09.008
- Wright AV, Nunez JK and Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164, 29-44 https://doi.org/10.1016/j.cell.2015.12.035
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 https://doi.org/10.1126/science.1225829
- Hsu PD, Lander ES and Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278 https://doi.org/10.1016/j.cell.2014.05.010
- Lee SH, Kim S and Hur JK (2018) CRISPR and target-specific DNA endonucleases for efficient DNA knock-in in eukaryotic genomes. Mol Cells 41, 943-952
- Zhang XH, Tee LY, Wang XG, Huang QS and Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4, e264
- Liu Y, Ma G, Gao Z et al (2022) Global chromosome rearrangement induced by CRISPR-Cas9 reshapes the genome and transcriptome of human cells. Nucleic Acids Res 50, 3456-3474 https://doi.org/10.1093/nar/gkac153
- Alvarez MM, Biayna J and Supek F (2022) TP53-dependent toxicity of CRISPR/Cas9 cuts is differential across genomic loci and can confound genetic screening. Nat Commun 13, 4520
- Tsai SQ and Joung JK (2016) Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet 17, 300-312 https://doi.org/10.1038/nrg.2016.28
- Kang SH, Lee WJ, An JH et al (2020) Prediction-based highly sensitive CRISPR off-target validation using target-specific DNA enrichment. Nat Commun 11, 3596
- Yen ST, Zhang M, Deng JM et al (2014) Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Dev Biol 393, 3-9 https://doi.org/10.1016/j.ydbio.2014.06.017
- Midic U, Hung PH, Vincent KA et al (2017) Quantitative assessment of timing, efficiency, specificity and genetic mosaicism of CRISPR/Cas9-mediated gene editing of hemoglobin beta gene in rhesus monkey embryos. Hum Mol Genet 26, 2678-2689 https://doi.org/10.1093/hmg/ddx154
- Lamas-Toranzo I, Galiano-Cogolludo B, Cornudella-Ardiaca F, Cobos-Figueroa J, Ousinde O and Bermejo-Alvarez P (2019) Strategies to reduce genetic mosaicism following CRISPR-mediated genome edition in bovine embryos. Sci Rep 9, 14900
- Mehravar M, Shirazi A, Nazari M and Banan M (2019) Mosaicism in CRISPR/Cas9-mediated genome editing. Dev Biol 445, 156-162 https://doi.org/10.1016/j.ydbio.2018.10.008
- Yeh CD, Richardson CD and Corn JE (2019) Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 21, 1468-1478 https://doi.org/10.1038/s41556-019-0425-z
- Landrum MJ, Lee JM, Benson M et al (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44, D862-868 https://doi.org/10.1093/nar/gkv1222
- Komor AC, Kim YB, Packer MS, Zuris JA and Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424 https://doi.org/10.1038/nature17946
- Gaudelli NM, Komor AC, Rees HA et al (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464-471 https://doi.org/10.1038/nature24644
- Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157 https://doi.org/10.1038/s41586-019-1711-4
- Kim S and Kim JS (2011) Targeted genome engineering via zinc finger nucleases. Plant Biotechnol Rep 5, 9-17 https://doi.org/10.1007/s11816-010-0161-0
- Ul Ain Q, Chung JY and Kim YH (2015) Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release 205, 120-127 https://doi.org/10.1016/j.jconrel.2014.12.036
- Petersen B (2017) Basics of genome editing technology and its application in livestock species. Reprod Domest Anim 52 Suppl 3, 4-13 https://doi.org/10.1111/rda.13012
- Nemudryi AA, Valetdinova KR, Medvedev SP and Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae 6, 19-40 https://doi.org/10.32607/20758251-2014-6-3-19-40
- Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826 https://doi.org/10.1126/science.1232033
- Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
- Huang CJ, Adler BA and Doudna JA (2022) A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Mol Cell 82, 2148-2160 e2144
- Kato K, Zhou W, Okazaki S et al (2022) Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex. Cell 185, 2324-2337 e2316
- Jiang F and Doudna JA (2017) CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys 46, 505-529 https://doi.org/10.1146/annurev-biophys-062215-010822
- Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949 https://doi.org/10.1016/j.cell.2014.02.001
- Jiang F and Doudna JA (2015) The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 30, 100-111 https://doi.org/10.1016/j.sbi.2015.02.002
- Jiang F, Zhou K, Ma L, Gressel S and Doudna JA (2015) STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348, 1477-1481 https://doi.org/10.1126/science.aab1452
- Jiang F, Taylor DW, Chen JS et al (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867-871 https://doi.org/10.1126/science.aad8282
- Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832 https://doi.org/10.1038/nbt.2647
- Fonfara I, Le Rhun A, Chylinski K et al (2014) Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42, 2577-2590 https://doi.org/10.1093/nar/gkt1074
- Anders C, Niewoehner O, Duerst A and Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573 https://doi.org/10.1038/nature13579
- Hu JH, Miller SM, Geurts MH et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57-63 https://doi.org/10.1038/nature26155
- Kleinstiver BP, Prew MS, Tsai SQ et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485 https://doi.org/10.1038/nature14592
- Li X and Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18, 99-113 https://doi.org/10.1038/cr.2008.1
- Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79, 181-211 https://doi.org/10.1146/annurev.biochem.052308.093131
- Sfeir A and Symington LS (2015) Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem Sci 40, 701-714 https://doi.org/10.1016/j.tibs.2015.08.006
- Chapman JR, Taylor MR and Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47, 497-510 https://doi.org/10.1016/j.molcel.2012.07.029
- Shrivastav M, De Haro LP and Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18, 134-147 https://doi.org/10.1038/cr.2007.111
- Deriano L and Roth DB (2013) Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47, 433-455 https://doi.org/10.1146/annurev-genet-110711-155540
- Heyer WD, Ehmsen KT and Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44, 113-139 https://doi.org/10.1146/annurev-genet-051710-150955
- Krejci L, Altmannova V, Spirek M and Zhao X (2012) Homologous recombination and its regulation. Nucleic Acids Res 40, 5795-5818 https://doi.org/10.1093/nar/gks270
- Sakuma T, Nakade S, Sakane Y, Suzuki KT and Yamamoto T (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11, 118-133 https://doi.org/10.1038/nprot.2015.140
- Bae S, Kweon J, Kim HS and Kim JS (2014) Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11, 705-706 https://doi.org/10.1038/nmeth.3015
- Cho SW, Kim S, Kim JM and Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232 https://doi.org/10.1038/nbt.2507
- Scharenberg SG, Poletto E, Lucot KL et al (2020) Engineering monocyte/macrophage-specific glucocerebrosidase expression in human hematopoietic stem cells using genome editing. Nat Commun 11, 3327
- Maxwell KG, Augsornworawat P, Velazco-Cruz L et al (2020) Gene-edited human stem cell-derived beta cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci Transl Med 12, eaax9106
- Smith C, Abalde-Atristain L, He C et al (2015) Efficient and allele-specific genome editing of disease loci in human iPSCs. Mol Ther 23, 570-577 https://doi.org/10.1038/mt.2014.226
- Shin JW, Kim KH, Chao MJ et al (2016) Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 25, 4566-4576 https://doi.org/10.1093/hmg/ddw286
- Monteys AM, Ebanks SA, Keiser MS and Davidson BL (2017) CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther 25, 12-23 https://doi.org/10.1016/j.ymthe.2016.11.010
- Cai W, Liu J, Chen X, Mao L and Wang M (2022) Orthogonal chemical activation of enzyme-inducible CRISPR/Cas9 for cell-selective genome editing. J Am Chem Soc 144, 22272-22280 https://doi.org/10.1021/jacs.2c10545
- Frangoul H, Altshuler D, Cappellini MD et al (2020) CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 384, 252-260 https://doi.org/10.1056/NEJMoa2031054
- Sheridan C (2023) The world's first CRISPR therapy is approved: who will receive it? Nat Biotechnol doi: 10.1038/d41587-023-00016-6
- Gillmore JD, Gane E, Taubel J et al (2021) CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 385, 493-502 https://doi.org/10.1056/NEJMoa2107454
- Christie KA, Courtney DG, DeDionisio LA et al (2017) Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders. Sci Rep 7, 16174
- Li P, Kleinstiver BP, Leon MY et al (2018) Allele-Specific CRISPR-Cas9 genome editing of the single-base P23H mutation for rhodopsin-associated dominant Retinitis Pigmentosa. CRISPR J 1, 55-64 https://doi.org/10.1089/crispr.2017.0009
- Rees HA, Yeh WH and Liu DR (2019) Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun 10, 2212
- Ling X, Xie B, Gao X et al (2020) Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates. Sci Adv 6, eaaz0051
- Yu Y, Guo Y, Tian Q et al (2020) An efficient gene knock-in strategy using 5'-modified double-stranded DNA donors with short homology arms. Nat Chem Biol 16, 387-390 https://doi.org/10.1038/s41589-019-0432-1
- Nguyen DN, Roth TL, Li PJ et al (2020) Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat Biotechnol 38, 44-49 https://doi.org/10.1038/s41587-019-0325-6
- Egli D, Zuccaro MV, Kosicki M, Church GM, Bradley A and Jasin M (2018) Inter-homologue repair in fertilized human eggs? Nature 560, E5-E7 https://doi.org/10.1038/s41586-018-0379-5
- Nishida K, Arazoe T, Yachie N et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729
- Komor AC, Zhao KT, Packer MS et al (2017) Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv 3, eaao4774
- Zafra MP, Schatoff EM, Katti A et al (2018) Optimized base editors enable efficient editing in cells, organoids and mice. Nat Biotechnol 36, 888-893 https://doi.org/10.1038/nbt.4194
- Koblan LW, Doman JL, Wilson C et al (2018) Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 36, 843-846 https://doi.org/10.1038/nbt.4172
- Kurt IC, Zhou R, Iyer S et al (2020) CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol 39, 41-46 https://doi.org/10.1038/s41587-020-0609-x
- Lin Q, Zong Y, Xue C et al (2020) Prime genome editing in rice and wheat. Nat Biotechnol 38, 582-585 https://doi.org/10.1038/s41587-020-0455-x
- Surun D, Schneider A, Mircetic J et al (2020) Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors. Genes 11, 511
- Liu Y, Li X, He S et al (2020) Efficient generation of mouse models with the prime editing system. Cell Discov 6, 27
- Chen PJ, Hussmann JA, Yan J et al (2021) Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635-5652 e5629
- Park SJ, Jeong TY, Shin SK et al (2021) Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol 22, 170
- Yarnall MTN, Ioannidi EI, Schmitt-Ulms C et al (2023) Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat Biotechnol 41, 500-512 https://doi.org/10.1038/s41587-022-01527-4
- Yeh WH, Chiang H, Rees HA, Edge ASB and Liu DR (2018) In vivo base editing of post-mitotic sensory cells. Nat Commun 9, 2184
- Arbab M, Matuszek Z, Kray KM et al (2023) Base editing rescue of spinal muscular atrophy in cells and in mice. Science 380, eadg6518
- Ryu SM, Koo T, Kim K et al (2018) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 36, 536-539 https://doi.org/10.1038/nbt.4148
- Gehrke JM, Cervantes O, Clement MK et al (2018) An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol 36, 977-982 https://doi.org/10.1038/nbt.4199
- Rovai A, Chung B, Hu Q et al (2022) In vivo adenine base editing reverts C282Y and improves iron metabolism in hemochromatosis mice. Nat Commun 13, 5215
- McAuley GE, Yiu G, Chang PC et al (2023) Human T cell generation is restored in CD3δ severe combined immunodeficiency through adenine base editing. Cell 186, 1398-1416 https://doi.org/10.1016/j.cell.2023.02.027
- Reichart D, Newby GA, Wakimoto H et al (2023) Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat Med 29, 412-421 https://doi.org/10.1038/s41591-022-02190-7
- Hong SA, Kim SE, Lee AY et al (2022) Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Mol Ther 30, 2664-2679 https://doi.org/10.1016/j.ymthe.2022.06.005
- Jang H, Jo DH, Cho CS et al (2022) Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. Nat Biomed Eng 6, 181-194 https://doi.org/10.1038/s41551-021-00788-9
- Qin H, Zhang W, Zhang S et al (2023) Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J Exp Med 220, e20220776
- Walton RT, Christie KA, Whittaker MN and Kleinstiver BP (2020) Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290-296 https://doi.org/10.1126/science.aba8853
- Jang G, Kweon J and Kim Y (2023) CRISPR prime editing for unconstrained correction of oncogenic KRAS variants. Commun Biol 6, 681