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Abstract
There are lots of studies attempting to identify the ex-
pression changes in oral squamous cell carcinoma. Most 
studies include insufficient samples to apply statistical 
methods for detecting significant gene sets. This study 
combined two small microarray datasets from a public 
database and identified significant genes associated 
with the progress of oral squamous cell carcinoma. 
There were different expression scales between the two 
datasets, even though these datasets were generated 
under the same platforms - Affymetrix U133A gene 
chips. We discretized gene expressions of the two data-
sets by adjusting the differences between the datasets 
for detecting the more reliable information. From the 
combination of the two datasets, we detected 51 signifi-
cant genes that were upregulated in oral squamous cell 
carcinoma. Most of them were published in previous 
studies as cancer-related genes. From these selected 
genes, significant genetic pathways associated with ex-
pression changes were identified. By combining several 
datasets from the public database, sufficient samples 
can be obtained for detecting reliable information. Most 
of the selected genes were known as cancer-related 
genes, including oral squamous cell carcinoma. Several 
unknown genes can be biologically evaluated in further 
studies.

Keywords: combined dataset, genetic pathway, oral 
squamous cell carcinoma, public microarray database, 
significant gene

Introduction
Despite recent advances in surgical, radiation, and che-

motherapeutic treatment protocols, the prognosis of oral 
squamous cell carcinoma (OSCC) remains mournful, with 
an approximate 50% 5-year mortality rate from disease 
or associated complications [1]. Therefore, the identi-
fication of biological markers is essential to make prog-
ress in detecting malignancy at an early stage and de-
veloping novel therapies [2].
  Microarray datasets that are created for the same re-
search purposes in different laboratories have accumu-
lated rapidly. The results from different datasets are of-
ten inconsistent due to the utilization of different plat-
forms, sample preparations, or various technical varia-
tions. If we could combine such datasets by adjusting 
for systematic biases that exist among different datasets 
derived from different experimental conditions, the pow-
er of statistical tests would be improved by the increase 
in sample size [3]. 
  In OSCC, although lots of microarray-based studies 
have been conducted to provide insights into gene ex-
pression changes, most of these studies have contained 
insufficient samples for detecting reliable information us-
ing statistical analysis [4, 5]. Therefore, this study at-
tempted to combine several datasets in the public data-
base for detecting significant genes.
  We used two small microarray datasets of OSCC for 
this study, which were based on the same platform but 
had different expression scales. These two datasets 
were combined after discretization, because a previous 
study showed that classification could be improved us-
ing combined datasets after discretization [3]. After 
combining datasets, we used chi-square test for identi-
fying the significant genes. Chi-square test has been 
used commonly to detect differentially expressed genes 
after discretization of expression intensities in the micro-
array experiment.
  In this study, gene expression ratios of two datasets 
were transformed with their ranks for each dataset. 
Next, the transformed datasets were combined, and a 
nonparametric statistical method was applied to the 
combined dataset to detect informative genes. Finally, 
we showed that most of the selected genes were 
known to be involved in various cancers, including 
OSCC.
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Data name Experimental platform No. of genes
No. of total 

samples
Normal group Tumor group

Data 2004 [4] Affymetrix U133A 14,119 20 4 16

Data 2005 [5] Affymetrix U133A 22,283 27 5 22

Combined dataset 14,119 47 9 38

GEO, Gene Expression Omnibus.

Table 1. Summaryof two microarray datasets from GEO and the combined dataset

Dataset A Dataset B Dataset C Combined dataset

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

E1 a11 a12 a13 b11 b12 b13 c11 c12 c13 t11 t12 t13

E2 a21 a22 a23 + b21 b22 b23 + c21 c22 c23 = t21 t22 t23

E3 a31 a32 a33 b31 b32 b33 c31 c32 c33 t31 t32 t33

P1, P2, and P3 represent the three different phenotypes. E1, E2, and E3 represent three groups by rank of gene expressions. aij, bij, and 

cij are the numbers of experiments belonging to Pj and Ei at the same time in data A, data B, and data C, respectively.

Table 2. Combination of contingency tables for three datasets (tij = aij + bij + cij)

Experimental groups by 

phenotypes

P1 P2 P3
Marginal 

sum

Experimental group

 by rank of gene

 expression

E1 n11 n12 n13 r1

E2 n21 n22 n23 r2

E3 n31 n32 n33 r3

Marginal sum c1 c2 c3 n

Table 3. Summary of discretized data using ranks of gene

expressionsMethods

Dataset

Two microarray datasets were used for this study. We 
acquired these datasets from a public database (Gene 
Expression Omnibus, GEO). One was the expression da-
taset of 16 tumors and 4 normal tissues from 16 pa-
tients, using Affymetrix U133A gene chips (Affymetrix, 
Santa Clara, CA, USA). The other microarray dataset 
consisted of expression profiles of 22 tumors and 5 nor-
mal tissues. These two datasets were experimented on 
under the same platform, Affymetrix U133A. The data-
sets are summarized in Table 1.

Process for combining datasets

For combining datasets, gene expression ratios are re-
arranged in order of expression ratios by each gene in 
each dataset, and the ranks are matched with the cor-
responding experimental group. If the experimental 
groups are homogenous, the ranks within the same ex-
perimental group would be neighboring. The process of 
discretization of gene expressions is summarized in the 
following steps [3]:

(1) Rank the gene expression ratios within a gene for 
each dataset.

(2) List in order of the ranks, and assign the order of 
gene expressions to the corresponding experimen-
tal groups.

(3) Summarize the result of (2) in the form of a con-
tingency table for each gene.

(4) Combine the contingency tables that have been 

summarized for each dataset. 
  When there are three datasets to be combined, the 
datasets can be added as a single entry, as shown in 
Table 2, after the transformation of each dataset by rank.

Identification of significant genes from a com-
bined dataset

After the summarization of gene expression ratios in the 
form of a contingency table for each gene, as shown in 
Table 3, a nonparametric statistical method was applied 
to the datasets for independence testing between gene 
expression patterns and experimental groups. The test 
statistics are calculated as follows for each gene:

2
2

ˆ[ ( )]
ˆ ( )

ij ij

ij

n E n
E n

χ
−

= ∑
, 
ˆ ( ) i j
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E n
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=

  When the sample size is small - generally Ê(nij) less 
than 5 - Fisher’s exact test is recommended rather than 
chi-square test.
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Fig. 1. Comparison of expres-

sion levels of two datasets. (A) 

Whole gene set. (B) Selected 

gene set.

Data 2004 Data 2005

 Subgroup

  Tumor 16 22

  Normal  4  5

 Sex

  Male 15 21

  Female  5  6

 Age (mean, standard deviation) 56.9 (10.22) 60.03 (14.16)

 Primary site

  Tongue  7 16

  Floor of mouth  9  5

  Other  4  6

 T stage

  T1  1  4

  T2  7  8

  T3  1  4

  T4  9 10

  Missing  2  1

Table 4. Summary of two microarray datasets

  The significant genes can be selected by an in-
dependence test between the phenotypes and gene ex-
pressions using this type of summarized dataset. ci and 
ri represent the marginal sums of the ith column and 
row, respectively. nij is the number of experiments be-
longing to Ei and Pj, and n represents the total number 
of experiments.

Results
The clinical information and expression levels of two da-

tasets are summarized in Table 4 and Fig. 1. Subgroup 
and sex were similarly distributed in the two datasets. 
The distributions of other factors were not included.
  The scale of expression levels in the two datasets 
was different; the expression values of Data 2004 
ranged from 0.01 to 740, and those of Data 2005 were 
from 0.1 to 19,773. The expression patterns of the two 
datasets can be explored in Fig. 1.
  Lots of outliers are shown in Fig. 1A in the two data-
sets containing whole gene sets. However, in subsets of 
significant genes, the expression ranges got narrow, and 
the outliers were decreased (Fig. 1B). The expressions 
of tumor tissues in Data 2004 were upregulated and 
varied compared with normal tissues. If there was no 
outlier with a maximum value in the 14th tumor tissue 
in Data 2004, the expressions of the two different 
groups would be clearly distinguished. Any clear differ-
ences in expression were not shown between the two 
groups in Data 2005.

Upregulated 51 genes in oral squamous cell car-
cinoma

To identify differently expressed genes between normal 
and tumor tissues, we performed chi-square test using 
a combined microarray dataset. Fifty-one significant 
genes were selected from a combined dataset with 
p-value less than 0.005, which were upregulated in 
OSCC tissues. The significance level can be controlled, 
and more genes can be selected with a lower sig-
nificance level. These selected genes are summarized in 
Table 5. 
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Affymetrix No. Gene Description Fold change

200037_s_at

200056_s_at 

200887_s_at 

201091_s_at 

201486_at

201518_at 

201663_s_at 

202633_at 

203038_at 

203301_s_at 

203562_at 

203566_s_at

203595_s_at 

203625_x_at 

203744_at 

203964_at 

204211_x_at 

204439_at 

204822_at 

204825_at 

206765_at 

207438_s_at 

208079_s_at 

208966_x_at

209095_at 

209524_at 

209903_s_at 

210283_x_at 

211725_s_at 

211727_s_at

212314_at 

212765_at 

212959_s_at 

213008_at 

213104_at 

213294_at 

213404_s_at 

213452_at 

213679_at 

214453_s_at 

215223_s_at 

215495_s_at

216841_s_at 

217901_at 

218469_at 

218627_at 

218901_at 

218986_s_at

219087_at 

219372_at 

219787_s_at

CBX3

C1D

STAT1

CBX3

RCN2

CBX1

SMC4

TOPBP1

PTPRK

DMTF1

FEZ1

AGL

IFIT5

SKP2

HMGB3

NMI

EIF2AK2

IFI44L

TTK

MELK

KCNJ2

SNUPN

AURKA

IFI16

DLD

HDGFRP3

ATR

PAIP1

BID

COX11

KIAA0746

CAMSAP1L1

GNPTAB

FANCI

C16ORF42

CCDC75

RHEB

ZNF184

TTC30A

IFI44

SOD2

SAMD4A

SOD2

DSG2

GREM1

DRAM

PLSCR4

FLJ20035

ASPN

IFT81

ECT2

Chromobox homolog 3 (hp1 gamma homolog, drosophila)

Nuclear dna-binding protein

Signal transducer and activator of transcription 1, 91kda

Chromobox homolog 3 (hp1 gamma homolog, drosophila)

Reticulocalbin 2, ef-hand calcium binding domain

Chromobox homolog 1 (hp1 beta homolog drosophila)

Smc4 structural maintenance of chromosomes 4-like 1 (yeast)

Topoisomerase (dna) ii binding protein 1

Protein tyrosine phosphatase, receptor type, k

Cyclin d binding myb-like transcription factor 1

Fasciculation and elongation protein zeta 1 (zygin i)

Amylo-1, 6-glucosidase, 4-alpha-glucanotransferase 

Interferon-induced protein with tetratricopeptide repeats 5

S-phase kinase-associated protein 2 (p45)

High-mobility group box 3

N-myc (and stat) interactor

Eukaryotic translation initiation factor 2-alpha kinase 2

Interferon-induced protein 44-like 

ttk protein kinase

Maternal embryonic leucine zipper kinase

Potassium inwardly-rectifying channel, subfamily j, member 2

rna, u transporter 1

Aurora kinase a

Interferon, gamma-inducible protein 16

Dihydrolipoamide dehydrogenase

Hepatoma-derived growth factor, related protein 3

Ataxia telangiectasia and rad3-related

Poly(a) binding protein interacting protein 1

bh3 interacting domain death agonist

Cox11 homolog, cytochrome c oxidase assembly protein 

kiaa0746 protein

Calmodulin-regulated spectrin-associated protein 1-like 1

Hypothetical protein dkfzp762b226

kiaa1794

Hypothetical protein mgc24381

Coiled-coil domain-containing 75

ras homolog enriched in brain

Zinc finger protein 184 (kruppel-like)

Hypothetical protein flj13946

Interferon-induced protein 44

Superoxide dismutase 2, mitochondrial

Sterile alpha motif domain containing 4a

Superoxide dismutase 2, mitochondrial

Desmoglein 2

Gremlin 1, cysteine knot superfamily, homolog 

Damage-regulated autophagy modulator 

Phospholipid scramblase 4

Hypothetical protein flj10787

Asporin (lrr class 1)

Intraflagellar transport 81 homolog (chlamydomonas)

Epithelial cell transforming sequence 2 oncogene

2.219978 

2.448721 

4.307249 

3.647541 

2.279745 

2.132493 

2.434400 

2.189444

3.345238 

1.378319 

2.853794 

2.114894 

2.664490 

2.007377 

2.974931 

3.840395

1.994068 

124.396853 

2.414220 

3.755818 

1.810372 

1.913825 

3.848891 

2.568727

1.476130 

2.724985 

1.635679 

1.997611 

3.476190 

1.419895 

10.323529 

1.717589

1.733743 

2.935005 

2.059115 

4.261916 

1.536225 

1.534287 

2.374943 

11.920148

4.950142 

3.204074 

4.790233 

5.614525 

3.366686 

2.780824 

3.663654 

6.364550

7.895878 

1.875798 

4.242975

Table 5. Summary of selected 51 upregulated genes

  Many genes among the selected genes were known 
as cancer-related genes. STAT1 [6], SKP2 [7], IFI16 [8], 
RHEB [9], FIF44 [10], SOD2 [11, 12], and GREM1 [11] 
are related to OSCC. Table 6 [13-56] summarizes the 

previous studies that have published the relations of se-
lected genes with cancer.
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Gene
Cancer 

association
References

OSCC 
association

References Fold change

CBX3
C1D
STAT1

RCN2
CBX1
SMC4
TOPBP1
PTPRK

DMTF1
FEZ1

AGL
IFIT5
SKP2

HMGB3
NMI

EIF2AK2
IFI44L
TTK

MELK

KCNJ2
SNUPN
AURKA

IFI16

DLD
HDGFRP3
ATR
PAIP1
BID
COX11
KIAA0746
CAMSAP1L1
GNPTAB
FANCI

C16ORF42
CCDC75
RHEB

ZNF184
TTC30A
IFI44
SOD2

SAMD4A

Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes

Yes

Yes
Yes

Yes

Yes

Yes 

Yes

Yes

Yes

Yes

Yes

Yes
Yes

Yang et al. [13]
Hiroi et al. [6]
Laimer et al. [15]
Cavallo et al. [16]
Luo et al. [17]

Going et al. [18]
Starr et al. [19]
Flavell et al. [20]
van Dekken et al. [21]
Califano et al. [22]
Chen et al. [23]
Fabris et al. [24]

Shintani et al. [25]

Hayes et al. [26]
Fillmore et al. [27]
Quaye et al. [28]

Harima et al. [29]
Kono et al. [30]
de Cárcer et al. [31]
Suda et al. [32]
Pickard et al. [33]
Kappadakunnel et al. [34]

Gałeza-Kulik et al. [35]

Torchia et al. [36]
Chen et al. [37]
Kaestner et al. [38]
Alimirah et al. [39]
Zhang et al. [40]
Ortega-Paino et al. [41]

Ahmed et al. [42]

Zhi et al. [43]
Barroso et al. [44]

Lee et al. [45]
Skrzycki et al. [46]
Olson et al. [47]

Lorch et al. [48]

Yes

Yes

Yes

Yes

Yes
Yes

Hiroi et al. [14]

Ben-Izhak et al. [7]

De Andrea et al. [8]

Chakraborty et al. [9]

Ye et al. [11]
Liu et al. [12]
Ye et al. [10]

2.219978 
2.448721 
4.307249 

2.279745 
2.132493 
2.434400 
2.189444
3.345238 

1.378319 
2.853794 

2.114894 
2.664490 
2.007377 

2.974931 
3.840395

1.994068 
124.396853 

2.414220 

3.755818 

1.810372 
1.913825 
3.848891

2.568727

1.476130 
2.724985 
1.635679 
1.997611 
3.476190 
1.419895 

10.323529 
1.717589
1.733743 
2.935005 

2.059115 
4.261916 
1.536225 

1.534287 
2.374943 

11.920148
4.950142 

4.790233 

OSCC, oral squamous cell carcinoma.

Table 6. Association of the selected genes and cancer



28 Genomics & Informatics Vol. 10(1) 23-32, March 2012

Fig. 2. Expression patterns of the selected 51 genes. 

These genes were upregulated in oral squamous cell carci-

noma tissues, and normal and tumor groups were clearly 

classified with these genes. 

Gene
Cancer 

association
References

OSCC 

association
References Fold change

DSG2

GREM1

DRAM

PLSCR4

FLJ20035

ASPN

IFT81

ECT2

Yes

Yes

Yes

Yes

Lorch et al. [49]

Crighton et al. [50]

Crighton et al. [51]

Mackay et al. [52]

Turashvili et al. [53]

Fields and Justilien [54]

Boelens et al. [55]

Hirata et al. [56]

Yes

Ye et al. [11] 5.614525 

3.366686 

2.780824 

3.663654 

6.364550

7.895878 

1.875798 

4.242975

OSCC, oral squamous cell carcinoma.

Table 6. Continued

Expression pattern of the identified genes

To investigate whether the different experimental groups 
could be classified with significant genes, an unsuper-
vised hierarchical clustering method was applied to the 
significant gene set (Fig. 2). 
  The normal group consisted of 4 tissues and showed 
significantly lower expression levels when compared 
with the tumor group. In Fig. 2, we investigated the 
classification availability of the identified genes in Data 
2004, not in a combined dataset, because the two data-
sets have different expression scales. 

Network analysis

Based on all identified genes, new and expanded path-

way maps and connections and specific gene-gene in-
teractions were inferred, functionally analyzed, and used 
to build on the existing pathway using the Ingenuity 
Pathway Analysis (IPA) knowledge base [57]. 
  To generate networks in this work, the knowledge 
base was queried for interactions between the identified 
genes and all other genes stored in the database. Four 
networks were found to be significant in OSCC. The 
network with the highest score (Network 1, score = 36) 
was generated, with 17 identified genes (Table 7, Fig. 
3).
  In the network diagram, STAT1 and SOD2 neighbored 
with NMI and AURKA, respectively. The expression lev-
els of STAT1 and SOD2 could be expected to be re-
lated with those of NMI and SOD2. Actually, the ex-
pressions of STAT1 and SOD2 were strongly positively 
correlated with NMI (r = 0.95) and AURKA (r = 0.87), 
respectively.

Discussion
OSCC is associated with substantial mortality and mor-
bidity [58]. To identify potential biomarkers for early de-
tection of invasive OSCC, microarray experiments have 
been conducted, and these kinds of microarray datasets 
have accumulated rapidly in the public database. 
However, there are many datasets that include in-
sufficient sample sizes for detecting significant genes by 
statistical analysis. Therefore, this study attempted to 
combine several microarray datasets from a public data-
base to identify significant candidates as biomarkers.
  In a microarray data analysis, the information from 
different datasets obtained under different experimental 
conditions may be inconsistent even though they are 
performed with the same research objectives. Moreover, 
even when the datasets are generated by the same 
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Network Genes Ingenuity networksa Function Scoreb

1 Akt, ATR (includes EG:545), AURKA, BID, C11ORF30, CBX1, CBX3, Ck2, Cyclin A,

 Cytochrome c, EIF2AK2, ERK, GREM1, GZMK, Histone h3, Histone h4, IFI16,

 IFN TYPE 1, IFNA3, Interferon alpha, NFkB (complex), NMI, PDGF BB, PI3K, PIF,

 Proteasome, RHEB, SKP2, SMC4, SNUPN, SOD2, STAT1, Tgf beta, TOPBP1, TTK

Cancer, cellular 

 response to

 therapeutics,

 cell cycle

36

2 AGL, ASPN, beta-estradiol, BTG1, C1D, COX11, DDX60, DNAJB4, DSC2, DSG2,

 ECT2, FGF13, GBP1 (includes EG:2633), HNF4A, IFI44, IFI44L, IFIT5, IFNA2,

 IFNA4, IFNA6, IFNA7, IFNA5 (includes EG:3442), KCNJ2, MAPK14, MST1, MYOG,

 NUP153, PARP9, PTPRK, RCN2, SMAD3, SSTR1, TGFB1, TGTP, TMF1

Cell-mediated immune

 response, embryonic

 development, antigen

 presentation

28

3 CAMSAP1L1, CDC25A, CDKN2A, DHFR, DISC1, DLD, DMTF1, DRAM

 (includes EG:55332), E2F4, FANCI, FEZ1, GNB2L1, GNPTAB, HMGB3, IFI202B,

 LBR, MCM3, MCM5, MELK, MKI67, MLC1, PABPC1, PAIP1, PDHB, Pias, PLSCR4,

 PRMT1, RUVBL2, SAMD4A, SLC2A4, TFDP1, TK1, TP53, TRA2B, YWHAG

Cell cycle,

 connective tissue

 development and

 function, cell death

24

4 CAMSAP1L1, CDC25A, CDKN2A, DHFR, DISC1, DLAT, DLD, DMTF1, DRAM

 (includes EG:55332), E2F4, EIF4A, FANCI, FEZ1, GNPTAB, HMGB3, IFI202B, LBR,

 MCM3, MCM5, MELK, MKI67, MLC1, PABPC1, PAIP1, PDHB, Pias, PLSCR4,

 PRMT1, RUVBL2, SAMD4A, SLC2A4, TFDP1, TP53, TRA2B, YWHAG

Cell cycle, connective 

 tissue development 

 and function,

 lipid metabolism

24

OSCC, oral squamous cell carcinoma.
aGenes in bold were identified in this study; other genes were neither on the expression array data used in this work nor changed sig-

nificantly; bA score ＞ 3 was considered significant.

Table 7. Four networks generated by upregulated genes in OSCC

Fig. 3. Network with the highest score (Network 1). Func-

tional relationships between genes based on known inter-

actions in Ingenuity Pathway Analysis (IPA) knowledge are 

described. 

platform, the data agreement may be affected by tech-
nical variations between laboratories. In such cases, it 
could be necessary to use a combined dataset after ad-
justing for the differences between such datasets for 

detecting the more reliable information. Combining data-
sets is especially useful in OSCC microarray datasets, 
because there are many datasets with insufficient sam-
ple sizes for analysis [4, 5, 59, 60].
  For identifying significant genes classifying tumor and 
normal groups, we achieved two microarray datasets 
from a public database, GEO. They included 20 and 27 
samples, and each sample size was unbalanced be-
tween the different groups. By combining these two da-
tasets, the sample size was increased, and we had a 
sufficient sample size for statistical analysis, even 
though it was still unbalanced. When these datasets 
were combined, we used the rank of gene expression, 
because the scale of gene expression was different. In 
this study, we identified 51 significant genes from a 
combined dataset, and this number could be increased 
or decreased by the significance level (we used 0.005). 
The selected 51 genes were upregulated in tumor 
tissues. Many of the selected genes were proven to be 
cancer-related genes by previous studies.
  SOD2 is associated with lymph node metastasis in 
OSCC and may provide predictive values for the diag-
nosis of metastasis [10]. Metastasis is a critical event in 
OSCC progression. An SOD2 variant has also been as-
sociated with increased breast cancer and ovarian can-
cer risk in previous studies [47, 61]. TopBP1 included 
eight BRCT domains (originally identified in BRCA1), and 
it was proposed as a breast cancer susceptibility gene 
[18, 62]. 
  By semiquantitative reverse transcription PCR analy-
sis, RHEB was shown to be upregulated in OSCC [9]. 
In salivary cancer, survival probability rates dropped 
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when Skp2 was overexpressed [7]. Overexpression of 
Skp2 is associated with the reduction of p27 (KIP1) ex-
pression and may have a role in the progression of 
OSCC [25].
  The expression of RCN2 was linearly related to the 
tumor mass increase, and its expression was increased 
in breast cancer [16]. PTPRK was proven as a candi-
date gene of colorectal cancer [19], and it is a func-
tional tumor suppressor in Hodgkin lymphoma cells [20]. 
DMTF1 was shown to be amplified in adenocarcinoma 
of the gastroesophageal junction, residing at 7q21 by 
aCGH experiments [21]. FEZ1 was involved in ovarian 
carcinogenesis, and its reduction or loss could be an 
aid to the clinical management of patients affected by 
ovarian carcinoma [22]. It is also a known tumor sup-
pressor gene in breast cancer and gastric cancer [23, 
63]. 
  Other ovarian cancer-related genes were NMI [27, 28] 
and FANCI [44]; breast cancer-related genes were COX11 
[42], MELK [33], and FANCI [44] among the selected 
genes. MELK was known to be associated with shorter 
survival in glioblastoma [34].
  TTK was associated with progression and metastasis 
of advanced cervical cancers after radiotherapy [29, 30]. 
It might also be a relevant candidate as a new target 
in cancer therapy, since it plays relevant roles in mitotic 
progression and the spindle checkpoint [31, 32]. Aurora 
kinase A (AURKA) was associated with skin tumors [36] 
and colorectal cancer [37, 38].
  In previous studies, OSCC-related genes among the 
selected genes were STAT1 [14], SKP2 [7, 25], IFI16 [8], 
RHEB [9], IFI44 [64], SOD2 [10-12], and GREM1 [11]. 
The gene set, which has not been proven as OSCC-re-
lated genes until now, could be expected to be possibly 
proven as OSCC-related genes by biological evaluation.
  In this study, we identified significant genes related 
with OSCC from two microarray datasets in a public 
database. For this, we transformed microarray datasets 
using ranks of gene expressions with different expres-
sion scales, even though they were constructed under 
the same experimental conditions. This method could be 
useful when using multiple datasets that are created for 
the same research purpose, By combining these accu-
mulated datasets, we can detect more reliable infor-
mation due to the increased sample size. It saves time 
and money and avoids repeating experiments.
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