• Title/Summary/Keyword: Generator protection

Search Result 271, Processing Time 0.025 seconds

A Study on the Protection of Power Distribution System with the Distributed Generator and Superconducting Fault Current Limiter (분산전원이 도입된 배전계통에 초전도한류기 적용시 계통보호 시스템의 영향에 관한 연구)

  • Kim, Myong-Hyon;Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1226-1231
    • /
    • 2012
  • The demand for electrical power has been significantly increased to satisfy the customers. As a result, a power distribution system have been advanced by power system's interconnection, installation of distributed generator(DG) and so on. The improvable power distribution system included the problem of increasable fault current. Superconducting fault current limiter (SFCL) is one of the solutions to limit a fault current. Therefore, to solve the problem of fault current by SFCL, simulation was progressed and the simulation used a PSCAD/EMTDC.

Controlling Zero Sequence Component in DVR for Compensating Unbalanced Voltage Dip of a DFIG

  • Ko, JiHan;Thinh, Quach Ngoc;Kim, SeongHuyn;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.154-155
    • /
    • 2012
  • The dynamic voltage restorer (DVR) is an effective protection device for wind turbine generator based on doubly-fed induction generator (DFIG) operated under the unbalanced voltage dip conditions. The compensating voltages of DVR depend on the voltage dips and on the influence of the zero sequence components. If the $Y_0/{\Delta}$ step-up transformers are used, there are no zero sequence components on the DFIG side. However, if the $Y_0/Y_0$ step-up transformers are used, the zero sequence components will appear during faults. The zero sequence components result in the high insulation costs and the asymmetric of the terminal voltages. This paper proposes a method for controlling zero sequence components in DVR to protect DFIG under unbalanced voltage dips. Simulation results are presented to verify the effectiveness of the proposed control method.

  • PDF

Design of SCR-Based ESD Protection Circuit for 3.3 V I/O and 20 V Power Clamp

  • Jung, Jin Woo;Koo, Yong Seo
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • In this paper, MOS-triggered silicon-controlled rectifier (SCR)-based electrostatic discharge (ESD) protection circuits for mobile application in 3.3 V I/O and SCR-based ESD protection circuits with floating N+/P+ diffusion regions for inverter and light-emitting diode driver applications in 20 V power clamps were designed. The breakdown voltage is induced by a grounded-gate NMOS (ggNMOS) in the MOS-triggered SCR-based ESD protection circuit for 3.3 V I/O. This lowers the breakdown voltage of the SCR by providing a trigger current to the P-well of the SCR. However, the operation resistance is increased compared to SCR, because additional diffusion regions increase the overall resistance of the protection circuit. To overcome this problem, the number of ggNMOS fingers was increased. The ESD protection circuit for the power clamp application at 20 V had a breakdown voltage of 23 V; the product of a high holding voltage by the N+/P+ floating diffusion region. The trigger voltage was improved by the partial insertion of a P-body to narrow the gap between the trigger and holding voltages. The ESD protection circuits for low- and high-voltage applications were designed using $0.18{\mu}m$ Bipolar-CMOS-DMOS technology, with $100{\mu}m$ width. Electrical characteristics and robustness are analyzed by a transmission line pulse measurement and an ESD pulse generator (ESS-6008).

Design and Fabrication of a Coaxial-type Transient Voltage Suppressor for Antenna Protection on Shipboard (선박 통신 안테나용 뇌방호장치의 설계 및 제작)

  • Han, Ju-Seop;Song, Jae-Yong;Kim, Il-Kwon;Kil, Gyung-Suk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1166-1169
    • /
    • 2005
  • This paper describes a new transient voltage suppressor(TVS) with a low insertion loss and a high cut-off frequency to protect antenna circuit from transient voltages. Conventional protection devices have some problems such as a low frequency bandwidth and a high insertion loss. In order to improve these limitations, a coaxal type TVS, which consists of a gas tube is developed. The performance of the proposed transient voltage suppressor is tested by using a combination surge generator specified in IEC 61000-4-5 standard and by using a network analyzer of 40 MHz ${\sim}$ 5 GHz bandwidth. From the experimental results, it is confirmed that the proposed TVS has an enough protection performance in a low insertion loss and a high cut-off frequency.

  • PDF

A Study on Out-of-Step Relay Operation due to Delayed Fault Clearing in Transmission Line (송전선로 고장제거 지연에 따른 동기 탈조 계전기 동작 검토)

  • Park, Ji-Kyung;Kim, Kwang-Hyun;Kim, Chul-Hwan;Lyu, Young-Sik;Yang, Jeong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1466-1473
    • /
    • 2017
  • Generally, electrical torque in synchronous generator is balanced with the rotor mechanical torque under steady-state condition. Thus, the synchronous generator rotor rotates at constant speed. However, under fault condition, the electrical torque output is suddenly decreased and the sum of both torques does not remain constant. If the mechanical torque is not decreased at the same time, the generator rotor would accelerate. Therefore, this accelerating generator rotates at different speeds with respect to other generators in the power system. This phenomena is called as Out-of-Step (OOS). In this paper, we presented a certain two-step type quadrilateral OOS relay setting, which is applicable in actual field, and examined the validity of its setting value with OOS simulation conditions due to delayed fault clearing in transmission line. In order to conduct the study of OOS relay characteristics, we checked the impedance locus and generator output characteristics under the various delayed fault clearing conditions. Moreover, we proposed a countermeasure for avoiding the misoperation of OOS relay during the stable swing by modifying the setting values.

Design and Evaluation of a Protection Relay for a Wind Generator Based on the Positive- and Negative-Sequence Fault Components

  • Zheng, Taiying;Cha, Seung-Tae;Kim, Yeon-Hee;Crossley, Peter A.;Lee, Sang Ho;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1029-1039
    • /
    • 2013
  • To avoid undesirable disconnection of healthy wind generators (WGs) or a wind power plant, a WG protection relay should discriminate among faults, so that it can operate instantaneously for WG, connected feeder or connection bus faults, it can operate after a delay for inter-tie or grid faults, and it can avoid operating for parallel WG or adjacent feeder faults. A WG protection relay based on the positive- and negative-sequence fault components is proposed in the paper. At stage 1, the proposed relay uses the magnitude of the positive-sequence component in the fault current to distinguish faults requiring non-operation response from those requiring instantaneous or delayed operation responses. At stage 2, the fault type is first determined using the relationships between the positive- and negative-sequence fault components. Then, the relay differentiates between instantaneous operation and delayed operation based on the magnitude of the positive-sequence fault component. Various fault scenarios involving changes in position and type of fault and faulted phases are used to verify the performance of the relay. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. Results indicate that the relay can successfully distinguish the need for instantaneous, delayed, or non-operation.

Transient Stability Analysis of Wind Turbine Generator Connected to a Weak Grid (약한 계통에 연계된 풍력발전기의 과도안정도 해석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4494-4499
    • /
    • 2014
  • The margin of transient stability of a weak grid system is very low because of the small short-circuit ratio and large impedance. If the fault of the weak grid is cleared by the protection system, one of the major lines is disconnected after the fault is cleared. This further reduces the system strength. Therefore, it is necessary that a new generation system be added to the weak grid to enhance the transient stability margin. A conventional synchronous generator and wind turbine generator were added to a base grid system. The results of transient stability analysis with additional generators using PSSE were compared. The simulations showed that wind turbine generators provide good damping performance and enhance the transient stability margin based on CCT up to 5 times.

Activities to attain integrity of generator current transformer (발전기 변류기 건전성 확보를 위한 연구)

  • Cho, C.W.;Cho, S.T.;Yang, K.H.;Ann, K.J.;Lee, H.Y.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.19-23
    • /
    • 2012
  • This thesis is the result of conducting an analysis to find the solution to the phenomenon of power stoppage due to the disconnection of a CT (Current Transformer) because of vibration. The CT which measures the most essential current is used in power industries as part of a generator protection relay. When it comes to the bottom plate of a CT, nonconductor; such as bakelite and laminates; these material elements should be used because it is impossible to utilize the conductor when measuring the current of a generator which carries a high current if you use other materials. These nonconductor's material properties are irregular and interpretation errors often occur because the weight is light. In addition, since the change of dynamic characteristics which are related to the temperature often occur, it is important to match the real situation by considering an error of interpretation rather than selecting the quality of the material. Lastly, the conclusion that the study drew is that it is possible to avoid the resonance by utilizing three changes to the components to solve the problem concerning the high vibration which is caused by non-conductive objects. These changes are the most crucial points in this thesis: First, material changes to the Plate. Second, weight changes to the Coil. Third, thickness changes to the Plate.

Design Circuit Parameter Estimation of Impulse Generator and its application to 10/350${\mu}s$ Lightning Impulse Current Generator (임펄스 발생기의 회로 설계 파라미터 예측계산과 10/350${\mu}s$ 뇌임펄스 전류발생기 적용)

  • Lee, Jae-Bok;Shenderey, S. V.;Chang, Sug-Hun;Myung, Sung-Ho;Cho, Yuen-Gue
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1822-1828
    • /
    • 2008
  • This paper presents design parameter calculation methodology and its realization to construction for the 10/350${\mu}s$ lightning impulse current generator(ICG) modelled as double exponential function waveform with characteristic parameters ${\alpha},{\beta}$. Matlab internal function, "fzero" was applied to find ${\lambda}={\alpha}/{\beta}$ which is solution of nonlinear equation linearly related with two wave parameter $T_1$ and $T_2$. The calculation results for 10/350${\mu}s$ lightning impulse current show very good accuracy with error less 0.03%. Two type of 10/350${\mu}s$ ICGs based on the calculated design circuit parameters were fabricated by considering the load variation. One is applicable to the MOV based Surge protective device(SPD) for less 15 kA and the other is to test small resistive devices such as spark gap arrester and bonding device with maximum current capability 30 kA. The tested waveforms show error within 10% in comparison with the designed estimation and the waveform tolerance recommended in the IEC 61643-1 and IEC 60060-1.

Energy efficiency improvements in part load for a marine auxiliary diesel engine (선박발전기용 디젤엔진의 부분부하에서 에너지 효율 개선에 관한연구)

  • Jung, Kyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.877-882
    • /
    • 2014
  • The reduction of CO2 emission has been discussed in the Marine Environment Protection committee in the International Maritime Organization as the biggest causes of GHG for the purpose of indexing CO2 amounts released into the atmosphere from ships. Accordingly, various methods including the change in the hull design to improve energy efficiency, the coating development to reduce friction resistances, the additives development for improving thermal efficiency in an engine, the low-speed operation to reduce fuel consumptions, and etc. have been applied. The main engine of a ship is an electronic engine for improving the efficiency of the whole load area. However, marine generator engines still use mechanical drive engines in intake, exhaust, and fuel injection valve drive cams. In addition, most of marine generator engines in ships apply a part-load operation of less then 80% due to an overload protection system. Therefore, marine auxiliary diesel engine set at 100% load is necessary to readjust in order to efficient operation because of part-load operation. The objective of this study is to report the results of the part-load fuel consumption improvement by injection timing readjust to identifying the operational characteristics of a marine generator engine currently operated in a ship.