• Title/Summary/Keyword: Generating Function

Search Result 798, Processing Time 0.029 seconds

A Study on the Generating Algorithm and the Correlation Function of Kumar Code Sequences for the Frequency Hopping Patterns (주파수 경로 패턴을 위한 Kumar 부호계열 발생 알고리즘 및 상관함수 특성에 관한 연구)

  • 이정재;한영렬
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.12
    • /
    • pp.1886-1902
    • /
    • 1989
  • In this paper we discuss the generating algorithm of Kumar code sequences which are based on generalized bent sequences for FH-CDMA. The code sequence generator was constructed for the shift register stages n=4 over GF (5). Finally we analyze the characteristics fo Hamming correlation between two code sequences and the time-frequency correlatins of the complete waveform with the sinusoidal chips as the elemental waveforms.

  • PDF

Lucas-Euler Relations Using Balancing and Lucas-Balancing Polynomials

  • Frontczak, Robert;Goy, Taras
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.473-486
    • /
    • 2021
  • We establish some new combinatorial identities involving Euler polynomials and balancing (Lucas-balancing) polynomials. The derivations use elementary techniques and are based on functional equations for the respective generating functions. From these polynomial relations, we deduce interesting identities with Fibonacci and Lucas numbers, and Euler numbers. The results must be regarded as companion results to some Fibonacci-Bernoulli identities, which we derived in our previous paper.

A GENERALIZATION OF THE LAGUERRE POLYNOMIALS

  • Ali, Asad
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.299-312
    • /
    • 2021
  • The main aim of this paper is to introduce and study the generalized Laguerre polynomials and prove that these polynomials are characterized by the generalized hypergeometric function. Also we investigate some properties and formulas for these polynomials such as explicit representations, generating functions, recurrence relations, differential equation, Rodrigues formula, and orthogonality.

GENERALIZATION OF LAGUERRE MATRIX POLYNOMIALS FOR TWO VARIABLES

  • Ali, Asad;Iqbal, Muhammad Zafar
    • Honam Mathematical Journal
    • /
    • v.43 no.1
    • /
    • pp.141-151
    • /
    • 2021
  • The main object of the present paper is to introduce the generalized Laguerre matrix polynomials for two variables. We prove that these matrix polynomials are characterized by the generalized hypergeometric matrix function. An explicit representation, generating functions and some recurrence relations are obtained here. Moreover, these matrix polynomials appear as solution of a differential equation.

INVERSE PROBLEM FOR STOCHASTIC DIFFERENTIAL EQUATIONS ON HILBERT SPACES DRIVEN BY LEVY PROCESSES

  • N. U., Ahmed
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.813-837
    • /
    • 2022
  • In this paper we consider inverse problem for a general class of nonlinear stochastic differential equations on Hilbert spaces whose generating operators (drift, diffusion and jump kernels) are unknown. We introduce a class of function spaces and put a suitable topology on such spaces and prove existence of optimal generating operators from these spaces. We present also necessary conditions of optimality including an algorithm and its convergence whereby one can construct the optimal generators (drift, diffusion and jump kernel).

ANALYSIS OF QUEUEING MODEL WITH PRIORITY SCHEDULING BY SUPPLEMENTARY VARIABLE METHOD

  • Choi, Doo Il
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.147-154
    • /
    • 2013
  • We analyze queueing model with priority scheduling by supplementary variable method. Customers are classified into two types (type-1 and type-2 ) according to their characteristics. Customers of each type arrive by independent Poisson processes, and all customers regardless of type have same general service time. The service order of each type is determined by the queue length of type-1 buffer. If the queue length of type-1 customer exceeds a threshold L, the service priority is given to the type-1 customer. Otherwise, the service priority is given to type-2 customer. Method of supplementary variable by remaining service time gives us information for queue length of two buffers. That is, we derive the differential difference equations for our queueing system. We obtain joint probability generating function for two queue lengths and the remaining service time. Also, the mean queue length of each buffer is derived.

Some applications for the difference of two CDFs

  • Hong, Chong Sun;Son, Yun Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.237-244
    • /
    • 2014
  • It is known that the dierence in the length between two location parameters of two random variables is equivalent to the difference in the area between two cumulative distribution functions. In this paper, we suggest two applications by using the difference of distribution functions. The first is that the difference of expectations of a certain function of two continuous random variables such as the differences of two kth moments and two moment generating functions could be defined by using the difference between two univariate distribution functions. The other is that the difference in the volume between two empirical bivariate distribution functions is derived. If their covariance is estimated to be zero, the difference in the volume between two empirical bivariate distribution functions could be defined as the difference in two certain areas.

M/M/2 system with two customer classes and exclusive server (전용서버가 있는 이계층고객 M/M/2 대기모형)

  • Jung, Jae-Ho;Hur, Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.5
    • /
    • pp.31-38
    • /
    • 2002
  • In this paper, we model a two-server queueing system with priority, to which we put a restriction on the number of servers for each customer class. customers are divided into two different classes. Class 1 customers have non-preemptive priority over class 2 customers. They are served by both servers when available but class 2 customers are served only by a designated server. We use a method of generating function depending on the state of servers. We find the generating function of the number of customers in queue, server utilization, mean queue length and mean waiting time for each class of customers.

Predicting the Score of a Soccer Match by Use of a Markovian Arrival Process (마코비안 도착과정을 이용한 축구경기 득점결과의 예측)

  • Kim, Nam-Ki;Park, Hyun-Min
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • We develop a stochastic model to predict the score of a soccer match. We describe the scoring process of the soccer match as a markovian arrival process (MAP). To do this, we define a two-state underlying Markov chain, in which the two states represent the offense and defense states of the two teams to play. Then, we derive the probability vector generating function of the final scores. Numerically inverting this generating function, we obtain the desired probability distribution of the scores. Sample numerical examples are given at the end to demonstrate how to utilize this result to predict the final score of the match.

SOME SYMMETRY IDENTITIES FOR GENERALIZED TWISTED BERNOULLI POLYNOMIALS TWISTED BY UNRAMIFIED ROOTS OF UNITY

  • Kim, Dae San
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.603-618
    • /
    • 2015
  • We derive three identities of symmetry in two variables and eight in three variables related to generalized twisted Bernoulli polynomials and generalized twisted power sums, both of which are twisted by unramified roots of unity. The case of ramified roots of unity was treated previously. The derivations of identities are based on the p-adic integral expression, with respect to a measure introduced by Koblitz, of the generating function for the generalized twisted Bernoulli polynomials and the quotient of p-adic integrals that can be expressed as the exponential generating function for the generalized twisted power sums.