• Title/Summary/Keyword: Generated power

Search Result 3,469, Processing Time 0.028 seconds

Construction of a Virtual Mobile Edge Computing Testbed Environment Using the EdgeCloudSim (EdgeCloudSim을 이용한 가상 이동 엣지 컴퓨팅 테스트베드 환경 개발)

  • Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1102-1108
    • /
    • 2020
  • Mobile edge computing is a technology that can prepare for a new era of cloud computing and compensate for shortcomings by processing data near the edge of the network where data is generated rather than centralized data processing. It is possible to realize a low-latency/high-speed computing service by locating computing power to the edge and analyzing data, rather than in a data center far from computing and processing data. In this article, we develop a virtual mobile edge computing testbed environment where the cloud and edge nodes divide computing tasks from mobile terminals using the EdgeCloudSim simulator. Performance of offloading techniques for distribution of computing tasks from mobile terminals between the central cloud and mobile edge computing nodes is evaluated and analyzed under the virtual mobile edge computing environment. By providing a virtual mobile edge computing environment and offloading capabilities, we intend to provide prior knowledge to industry engineers for building mobile edge computing nodes that collaborate with the cloud.

MECHANICAL POWER SYSTEM OF TONGCHEON-UI, AN ASTRONOMICAL CLOCK MADE BY HONG, DAE-YONG (홍대용이 제작한 천문시계 통천의의 기계동력시스템)

  • MIHN, BYEONG-HEE;YUN, YONG-HYUN;KIM, SANG HYUK;KI, HO CHUL
    • Publications of The Korean Astronomical Society
    • /
    • v.35 no.3
    • /
    • pp.43-57
    • /
    • 2020
  • Hong, Dae-Yong manufactured the Tongcheon-ui (Pan-celestial Armillary Sphere) with cooperating clock researcher Na, Kyeong-Jeok, and its craftsman An, Cheo-In, in Naju of Jeolla Province in 1760 ~ 1762. Tongcheon-ui is a kind of astronomical clock with an armillary sphere which is rotated by the force generated by a lantern clock's weight. In our study, we examine the lantern clock model of Tongcheon-ui through its description of the articles written by Hong himself. As his description, however, did not explain the detail of the mechanical process of the lantern clock, we investigate the remains of lantern clocks in the possession of Korea University Museum and Seoul National University Museum. Comparing with the clocks of these museums, we designed the lantern clock model of Tongcheon-ui which measures 115 mm (L) × 115 mm (W) × 307 mm (H). This model has used the structure of the striking train imitated from the Korea University Museum artifact and is also regulated by a foliot escapement which is connected to a going train for timekeeping. The orientation of the rotation of the going train and the striking train of our model makes a difference with the remains of both university museums. That is, on the rotation axis of the first gear set of Tongcheon-ui's lantern clock, the going and the striking trains take on a counterclockwise and clockwise direction, respectively. The weight of 6.4 kg makes a force driving these two trains to stick to the pulley on the twine pulling across two spike gears corresponding to the going train and the striking train. This weight below the pulley may travel down about 560 mm per day. We conclude that the mechanical system of Tongcheon-ui's lantern clock is slightly different from the Japanese style.

Design of Phase Locked Loop (PLL) based Time to Digital Converter for LiDAR System with Measurement of Absolute Time Difference (LiDAR 시스템용 절대시간 측정을 위한 위상고정루프 기반 시간 디지털 변환기 설계)

  • Yoo, Sang-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.677-684
    • /
    • 2021
  • This paper presents a time-to-digital converter for measuring absolute time differences. The time-to-digital converter was designed and fabricated in 0.18-um CMOS technology and it can be applied to Light Detection and Ranging system which requires long time-cover range and 50ps time resolution. Since designed time-to-digital converter adopted the reference clock of 625MHz generated by phase locked loop, it could have absolute time resolution of 50ps after automatic calibration and its cover range was over than 800ns. The time-to-digital converter adopted a counter and chain delay lines for time measurement. The counter is used for coarse time measurement and chain delay lines are used for fine time measurement. From many times experiments, fabricated time-to-digital converter has 50 ps time resolution with maximum INL of 0.8 LSB and its power consumption is about 70 mW.

Computational simulations of transitional flows around turbulence stimulators at low speeds

  • Lee, Sang Bong;Seok, Woochan;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.236-245
    • /
    • 2021
  • In this study, direct numerical and large eddy simulations of transitional flows around studs were conducted to investigate the effectiveness of turbulence stimulators at very low speeds for the minimum propulsion power condition of four knots. For simplicity, the studs were assumed to be installed on a flat plate, while the wake was observed up to 0.23 m downstream behind the second stud. For applicability to a model ship, we also studied the flow characteristics behind the first and second studs installed on a curved plate, which was designed to describe the geometry of a bulbous bow. A laminar-to-turbulent transition was observed in the wake at ReD ≥ 921 (U≥0.290 m/s), and the wall shear stress at ReD = 1162 (U = 0.366 m/s) in the second wake was similar to that of the fully developed turbulent boundary layer after a laminar-to-turbulent transition in the first wake. At ReD = 581 (U = 0.183 m/s), no turbulence was stimulated in the wake behind the first and second studs on the flat plate, while a cluster of vortical structures was observed in the first wake over the curved plate. However, a cluster of vortical structures was revealed to be generated by the reattachment process of the separated shear layer, which was disturbed by the first stud rather than directly initiated by the first stud. It was quite different from a typical process of transition, which was observed at relatively high ReD that the spanwise scope of the turbulent vortical structures expanded gradually as it went downstream.

A Study on the Characteristics of Silicon Nanopowders Produced by Transferred Type Arc Plasma Apparatus (이송식 아크플라즈마 장치에 의해 제조된 실리콘 나노분말의 특성에 대한 연구)

  • Kan, Woo-Seop;Park, Sang-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.909-917
    • /
    • 2021
  • This study was carried out experimentally on the production and properties of silicon nanopowders characteristics using a transferred type arc plasma apparatus. To investigate the properties of silicon nanopowder, the purity of argon gas(99.999%, 99.9%) and the partial pressure ratio of nitrogen gas(0~90%) were varied. The total pressure in chamber is 400Torr and the silicon chunk amount used as raw material is 300g. The power supplied to the cathode to generate arc plasma was 9~12kW/h, and the electrode was made of tungsten and graphite with a diameter of 13mm. The particle size, impurity elements and powder evaporation rate of the silicon powder were analyzed using the XRD, FE-SEM, TEM and electronic scale. According to the purity of argon gas, the silicon evaporation rate and the particle size were similar, and impurities were generated more in the case of 99.9% purity than 99.999%. When argon gas and nitrogen gas were mixed in the chamber, the silicon evaporation rate and particle size increased as the partial pressure ratio of nitrogen gas increased. In particular, when the partial pressure ratio of nitrogen gas was 80%, the silicon evaporation rate 80g/h, and the particle size was about 80~100nm.

Modeling and Simulation of a Gas Turbine Engine for Control of Mechanical Propulsion Systems (기계식 추진 시스템 제어를 위한 가스터빈 엔진 모델링 및 시뮬레이션)

  • Back, Kyeongmi;Huh, Hwanil;Ki, Jayoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, performance modeling and simulation of a gas turbine engine, a constituent module, was performed for the integrated control of the CODOG structure, mechanical propulsion systems. The engine model used MATLAB/Simulink to facilitate integration with the host controller and other components, and was configured to enable input/output settings suitable for the system configuration and purpose. In general, engine manufacturers do not provide performance data for the engine and components. Therefore, as a modeling method for a gas turbine, a CMF method that obtains performance data by scaling the map of components was applied. Using the generated model and simulation program, steady-state and dynamic simulation analysis tests were performed, and reliability within 5% of the maximum error was secured for the final output of power.

The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility

  • Kapulla, R.;Paranjape, S.;Fehlmann, M.;Suter, S.;Doll, U.;Paladino, D.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2311-2320
    • /
    • 2022
  • The main outcomes of the experiments H2P6 performed in the thermal-hydraulics large-scale PANDA facility at PSI in the frame of the OECD/NEA HYMERES-2 project are presented in this article. The experiments of the H2P6 series consists of two PANDA tests characterized by the activation of three (H2P6_1) or one (H2P6_2) cooler(s) in an initially stratified and pressurized containment atmosphere. The initial stratification is defined by a helium-rich region located in the upper part of the vessel and a steam/air atmosphere in the lower part. The activation of the cooler(s) results i) in the condensation of the steam in the vicinity of the cooler(s), ii) the corresponding activation of large scale natural circulation currents in the vessel atmosphere, with the result of iii) the re-distribution and mixing of the Helium stratification initially located in the upper half of the vessel and iv) the continuous pressure decay. The initial helium layer represents hydrogen generated in a postulated severe accident. The main question to be answered by the experiments is whether or not the interaction of the different, localized cooler units would be important for the application of numerical methods. The paper describes the initial and boundary conditions and the experimental results of the H2P6 series with the suggestion of simple scaling laws for both experiments in terms of i) the temperature difference(s) across the cooler(s), ii) the transient steam and helium content and iii) the pressure decay in the vessel. The outcomes of this scaling indicate that the interaction between separate, closely localized units does not play a prominent role for the present experiments. It is therefore reasonable to model several units as one large component with equivalent heat transfer area and total water flow rate.

Study of IoT Module Package Design Optimization for Drop Testing by Drone (IoT 모듈 패키지 디자인 최적화 및 드론에서의 낙하해석 연구)

  • Jo, Eunsol;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.63-67
    • /
    • 2021
  • In order to detect fires that may not be visible to the naked eye, an IoT module that uses changes in Carbon dioxide (CO2) levels and temperature to effectively identify ambers (dying flames) was developed. Finite element analysis was then used to optimize the packaging for this module. Given the nature of ambers, the low power long range LoRa (Long Range) technology was used in the development of this module. To protect the module, a number of packages were designed, and comparative analysis performed on the stress generated when they fall. The results of which show that Model C showed the lowest stress. In addition, unlike other models in which stress concentration was predicted in the module mounting part of the package, in this model the stress concentration phenomenon was predicted in the wing part. It was therefore determined that this approach is ideal for protecting the internal module, and a package to which this was applied was manufactured.

Improved Hot data verification considering the continuity and frequency of data update requests (데이터 갱신요청의 연속성과 빈도를 고려한 개선된 핫 데이터 검증기법)

  • Lee, Seungwoo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.33-39
    • /
    • 2022
  • A storage device used in the mobile computing field should have low power, light weight, durability, etc., and should be able to effectively store and manage large-capacity data generated by users. NAND flash memory is mainly used as a storage device in the field of mobile computing. Due to the structural characteristics of NAND flash memory, it is impossible to overwrite in place when a data update request is made, so it can be solved by accurately separating requests that frequently request data update and requests that do not, and storing and managing them in each block. The classification method for such a data update request is called a hot data identification method, and various studies have been conducted at present. This paper continuously records the occurrence of data update requests using a counting filter for more accurate hot data validation, and also verifies hot data by considering how often the requested update requests occur during a specific time.

Effect of Adding Fermented Organic Matter on the Performance of Benthic Microbial Fuel Cell (BMFC) (저생 미생물 연료전지(BMFC)의 성능에 미치는 발효 유기물 첨가 효과)

  • Lee, Mi-Hwa;Yang, Seol-Hwa;Kim, Young-Sook;Chu, Cheun-Ho;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.486-491
    • /
    • 2022
  • A benthic microbial fuel cell (BMFC) is an eco-friendly energy conversion device that uses electricity generated by benthic microorganisms decomposing organic matter in the mud of the sea or lake. In this study, in order to understand how domestic wastewater flowing into tidal flats affects the performance of BMFC. BMFC performance was compared and reviewed by fermenting organic substances in food and mixing them with tidal flats. Performance of the BMFC was improved by 49% by adding fermented food rich in vitamins (B2, B6, B12, C, D, E) and soft flour. The maximum power density increased as the amount of fermented organic matter increased, and it was shown that the fermented organic matter fermented during 25~29 days was optimal for BMFC.