DOI QR코드

DOI QR Code

Study of IoT Module Package Design Optimization for Drop Testing by Drone

IoT 모듈 패키지 디자인 최적화 및 드론에서의 낙하해석 연구

  • Jo, Eunsol (Electronic Packaging Research Center, Kangnam University) ;
  • Kim, Gu-Sung (Electronic Packaging Research Center, Kangnam University)
  • 조은솔 (강남대학교 전자패키지연구소) ;
  • 김구성 (강남대학교 전자패키지연구소)
  • Received : 2021.12.06
  • Accepted : 2021.12.28
  • Published : 2021.12.30

Abstract

In order to detect fires that may not be visible to the naked eye, an IoT module that uses changes in Carbon dioxide (CO2) levels and temperature to effectively identify ambers (dying flames) was developed. Finite element analysis was then used to optimize the packaging for this module. Given the nature of ambers, the low power long range LoRa (Long Range) technology was used in the development of this module. To protect the module, a number of packages were designed, and comparative analysis performed on the stress generated when they fall. The results of which show that Model C showed the lowest stress. In addition, unlike other models in which stress concentration was predicted in the module mounting part of the package, in this model the stress concentration phenomenon was predicted in the wing part. It was therefore determined that this approach is ideal for protecting the internal module, and a package to which this was applied was manufactured.

이번 논문에선 육안으로 확인하기 어려운 곳에 남아있는 불씨들을 효율적으로 감지하기 위해 CO2와 온도 변화를 감지하는 기능을 탑재한 잔불 감지용 IoT 모듈을 개발하여 이를 보호하는 패키지를 유한요소해석을 사용하여 최적화하였다. 개발된 모듈은 불씨의 특성을 고려하여 저전력 원거리 통신이 가능한 LoRa 기술을 적용하여 제작하였다. 제작된 모듈을 보호하기 위한 패키지 디자인을 고안하여 낙하 시 발생하는 응력에 대해 비교 분석하였다. 그 결과, Model C에서 가장 작은 응력이 발생하였다. 또한 패키지의 모듈 장착부분에 응력 집중이 예측된 타 모델들과 달리 날개 부분에서 응력이 집중 현상이 예측되어 내부 모듈을 보호하기에 적합하다 판단해 이를 적용한 패키지를 제작하였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(2018-0-01456, 친환경 소재를 적용한 광역 Disposable IoT-Tag 개발)

References

  1. B. C. Ko, "IoT Technology for Forest Fire Disaster Monitoring (in Kor.)", Broadcasting and media magazine, 20(3), pp. 91-92 (2015).
  2. S. H. Choe, J. H. Yoo, P. S. S. Tissera, J. I. Kang and H. K. Yang, "Event Processing-based Low-Power Low-Cost Wireless Sensor Network for Real Time Wildfire Monitoring", The Transactions of the Korean Institute of Electrical Engineers, 69(5), pp.706-708 (2020). https://doi.org/10.5370/kiee.2020.69.5.706
  3. Korea Forest Service, "2019 Forest Fire Statistics Yearbook (in Kor.)", Daejeon, pp. 118 (2020).
  4. Korea Forest Research Institute, "Management Technology to Prevent the Spread of Residual Fire (in Kor.)", Seoul, pp. 1-21 (2009).
  5. B. D. Lee, "Development of portable thermal imaging camera that detects small fire (in Kor.)", Forest science information 227, pp. 4-5.
  6. Y. J. Park, K. H. Kim and J. H. Kang, "A residual fire detection system using a d rone equipped with a thermal imaging camera", Republic of Korea, 10-1768012 (2017).
  7. C. M. Jang and S. K. Kim., "Prediction of Impact Life Time in Solder Balls of the Board Level Flip Chips by Drop Simulations", Journal of the Korean Society of Manufacturing Technology Engineers, 23(3), pp.237-242 (2014). https://doi.org/10.7735/ksmte.2014.23.3.237
  8. T. M. Kang, D. W. Lee, Y. K. Hwang, Q. H. Chung and B. K. Yoo, "A Study on the Correlation Between Board Level Drop Test Experiment and Simulation", J. Microelectron. Packag. Soc., 18(2), pp.35-36 (2011). https://doi.org/10.6117/KMEPS.2011.18.2.035
  9. T. Y. Tee, H. S. Ng, C. T. Lim, E. Pek and Z. Zhong, "Impact life prediction modeling of TFBGA packages under board level drop test", Microelectronics Reliability, 44(7), pp.1133-1135 (2004).
  10. R. Quey, P. R. Dawson, F. Barbe, "Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing", Comput. Methods Appl. Mech. Eng, 200(17-20), pp.1729-1730 (2011). https://doi.org/10.1016/j.cma.2011.01.002
  11. Y. H. Bae, "100 minute flight, thermal imaging camera extinguishing forest fire monitoring drone(in Kor.)", Yonhap News Agency, (May. 29, 2019) from https://www.yna.co.kr/view/AKR20190529120100062.
  12. H. J. Jung, D. H. Lee, "LPWA Network Technology and Test Certification Trends for IoT (in Kor.)", Telecommunications Technology Association(TTA) Journal ,178, pp.94-97 (2018)
  13. T. J. Park, K. S. Lee, W. C. Jeong, B. C. Choi and H. C. Bang, "LPWA IoT Network Technology Trends", Electronics and Telecommunications Research Institute (ETRI), pp.47-51 (2017).
  14. S. H. Mah and B. S. Kim, "LoRa Technology Analysis and LoRa Use Case Analysis By Country", The Journal of The Institute of Internet Broadcasting and Communication (IIBC), 19(1), pp.15-16 (2019). https://doi.org/10.7236/JIIBC.2019.19.1.15
  15. K. Mekki, E. Bajic, F. Chaxel and F. Meyer, "A comparative study of LPWAN technologies for large-scale IoT deployment", The Korean Institute of Communications and Information Sciences (KICS), 5(1), pp. 3 (2019).