• Title/Summary/Keyword: Generalized ${\alpha}$-nonexpansive mapping

Search Result 5, Processing Time 0.019 seconds

AN ITERATIVE METHOD FOR SOLVING EQUILIBRIUM PROBLEM FIXED POINT PROBLEM AND GENERALIZED VARIATIONAL INEQUALITIES PROBLEM

  • Zhang, Lijuan;Li, Juchun
    • East Asian mathematical journal
    • /
    • v.27 no.5
    • /
    • pp.527-538
    • /
    • 2011
  • In this paper, we introduce a new iterative scheme for finding a common element of the set of an equilibrium problem, the set of fixed points of nonexpansive mapping and the set of solutions of the generalized variational inequality for ${\alpha}$-inverse strongly g-monotone mapping in a Hilbert space. Under suitable conditions, strong convergence theorems for approximating a common element of the above three sets are obtained.

APPROXIMATING FIXED POINTS FOR GENERALIZED 𝛼-NONEXPANSIVE MAPPING IN CAT(0) SPACE VIA NEW ITERATIVE ALGORITHM

  • Samir Dashputre;Rakesh Tiwari;Jaynendra Shrivas
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.69-81
    • /
    • 2024
  • In this paper, we provide certain fixed point results for a generalized 𝛼-nonexpansive mapping, as well as a new iterative algorithm called SRJ-iteration for approximating the fixed point of this class of mappings in the setting of CAT(0) spaces. Furthermore, we establish strong and ∆-convergence theorem for generalized 𝛼-nonexpansive mapping in CAT(0) space. Finally, we present a numerical example to illustrate our main result and then display the efficiency of the proposed algorithm compared to different iterative algorithms in the literature. Our results obtained in this paper improve, extend and unify results of Abbas et al. [10], Thakur et al. [22] and Piri et al. [19].

ON GENERALIZED (𝛼, 𝛽)-NONEXPANSIVE MAPPINGS IN BANACH SPACES WITH APPLICATIONS

  • Akutsah, F.;Narain, O.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.663-684
    • /
    • 2021
  • In this paper, we present some fixed point results for a general class of nonexpansive mappings in the framework of Banach space and also proposed a new iterative scheme for approximating the fixed point of this class of mappings in the frame work of uniformly convex Banach spaces. Furthermore, we establish some basic properties and convergence results for our new class of mappings in uniformly convex Banach spaces. Finally, we present an application to nonlinear integral equation and also, a numerical example to illustrate our main result and then display the efficiency of the proposed algorithm compared to different iterative algorithms in the literature with different choices of parameters and initial guesses. The results obtained in this paper improve, extend and unify some related results in the literature.

GENERALIZED 𝛼-NONEXPANSIVE MAPPINGS IN HYPERBOLIC SPACES

  • Kim, Jong Kyu;Dashputre, Samir;Padmavati, Padmavati;Sakure, Kavita
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.449-469
    • /
    • 2022
  • This paper deals with the new iterative algorithm for approximating the fixed point of generalized 𝛼-nonexpansive mappings in a hyperbolic space. We show that the proposed iterative algorithm is faster than all of Picard, Mann, Ishikawa, Noor, Agarwal, Abbas, Thakur and Piri iteration processes for contractive mappings in a Banach space. We also establish some weak and strong convergence theorems for generalized 𝛼-nonexpansive mappings in hyperbolic space. The examples and numerical results are provided in this paper for supporting our main results.

STRONG CONVERGENCE OF THE MODIFIED HYBRID STEEPEST-DESCENT METHODS FOR GENERAL VARIATIONAL INEQUALITIES

  • Yao, Yonghong;Noor, Muhammad Aslam
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.179-190
    • /
    • 2007
  • In this paper, we consider the general variational inequality GVI(F, g, C), where F and g are mappings from a Hilbert space into itself and C is the fixed point set of a nonexpansive mapping. We suggest and analyze a new modified hybrid steepest-descent method of type method $u_{n+l}=(1-{\alpha}+{\theta}_{n+1})Tu_n+{\alpha}u_n-{\theta}_{n+1g}(Tu_n)-{\lambda}_{n+1}{\mu}F(Tu_n),\;n{\geq}0$. for solving the general variational inequalities. The sequence $\{x_n}\$ is shown to converge in norm to the solutions of the general variational inequality GVI(F, g, C) under some mild conditions. Application to constrained generalized pseudo-inverse is included. Results proved in the paper can be viewed as an refinement and improvement of previously known results.