DOI QR코드

DOI QR Code

APPROXIMATING FIXED POINTS FOR GENERALIZED 𝛼-NONEXPANSIVE MAPPING IN CAT(0) SPACE VIA NEW ITERATIVE ALGORITHM

  • Samir Dashputre (Department of Mathematics, Shahid Durwasha Nishad Govt. College) ;
  • Rakesh Tiwari (Department of Mathematics, Govt. V.Y.T. PG Autonomous College) ;
  • Jaynendra Shrivas (Department of Mathematics, Govt. V.Y.T. PG Autonomous College)
  • Received : 2023.05.09
  • Accepted : 2023.09.08
  • Published : 2024.03.15

Abstract

In this paper, we provide certain fixed point results for a generalized 𝛼-nonexpansive mapping, as well as a new iterative algorithm called SRJ-iteration for approximating the fixed point of this class of mappings in the setting of CAT(0) spaces. Furthermore, we establish strong and ∆-convergence theorem for generalized 𝛼-nonexpansive mapping in CAT(0) space. Finally, we present a numerical example to illustrate our main result and then display the efficiency of the proposed algorithm compared to different iterative algorithms in the literature. Our results obtained in this paper improve, extend and unify results of Abbas et al. [10], Thakur et al. [22] and Piri et al. [19].

Keywords

References

  1. N. Akkasriworn, A. Padcharoen and H.G. Hyun, Convergence theorems for a hybrid pair of single-valued and multi-valued nonexpansive mapping in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 27(4) (2022), 731-742.
  2. K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Analysis: TMA., 4(13) (2011), 4387-4391. https://doi.org/10.1016/j.na.2011.03.057
  3. M.R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer Science and Business Media, 319 (2013).
  4. K.S. Brown, Buildings, Springer, (1989).
  5. F. Bruhat and J. Tits, Groupes reductifs sur un corps local: I. Donnees radicielles valuees, Publications Mathematiques de l'IHES, 44(1) (1972), 5-251. https://doi.org/10.1007/BF02715544
  6. S. Dhompongsa and B. Panyanak, On ∆-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56(10) (2008), 2572-2579. https://doi.org/10.1016/j.camwa.2008.05.036
  7. K. Goebel and R. Simeon, Uniform convexity, hyperbolic geometry and nonexpansive mappings, Dekker, (1984).
  8. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73(6) (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  9. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1) (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
  10. S.H. Khan and M. Abbas, Strong and ∆-convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl., 61(1) (2011), 109-116. https://doi.org/10.1016/j.camwa.2010.10.037
  11. J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Gupta, Demiclosedness principle and convergence theorems for Lipschitzian type nonself-mappings in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 23(1) (2018), 73-95.
  12. K.S. Kim, Existence theorem of a fixed point for asymptotically nonexpansive nonself mapping in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 25(2) (2020), 355-362.
  13. W.A. Kirk, Geodesic geometry and fixed point theory II. Int. Conf. Fixed Point Theory and Applications, Yokohama Publ., Yokohama, (2004), 113-142.
  14. W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces. Nonlinear Anal. TMA., 68(12) (2008), 3689-3696. https://doi.org/10.1016/j.na.2007.04.011
  15. P. Lamba and A. Panwar, A Picard S∗ iterative algorithm for approximating fixed points of generalized α-nonexpansive mappings, SJ. Math. Comput. Sci., 11(3) (2021), 2874-2892.
  16. T. Laokul and B. Panyanak, Approximating fixed points of nonexpansive mappings in CAT(0) spaces, Int. J. Math. Anal., 25(3) (2009), 1305-1315.
  17. W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(3) (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
  18. R. Pant and R. Shukla, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces, Num. Funct. Anal. Opt., 38(2) (2017), 248-266. https://doi.org/10.1080/01630563.2016.1276075
  19. H. Piri, B. Daraby, S. Rahrovi and M. Ghasemi, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process, Num. Algorithms, 81(2019), 1129-1148. https://doi.org/10.1007/s11075-018-0588-x
  20. H.F. Senter and W.G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44(2) (1974), 375-380. https://doi.org/10.1090/S0002-9939-1974-0346608-8
  21. T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(4) (2008), 1088-1095. https://doi.org/10.1016/j.jmaa.2007.09.023
  22. B.S. Thakur, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzukis generalized nonexpansive mappings, App. Math. Comp., 275 (2016), 147-155. https://doi.org/10.1016/j.amc.2015.11.065