References
- N. Akkasriworn, A. Padcharoen and H.G. Hyun, Convergence theorems for a hybrid pair of single-valued and multi-valued nonexpansive mapping in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 27(4) (2022), 731-742.
- K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Analysis: TMA., 4(13) (2011), 4387-4391. https://doi.org/10.1016/j.na.2011.03.057
- M.R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer Science and Business Media, 319 (2013).
- K.S. Brown, Buildings, Springer, (1989).
- F. Bruhat and J. Tits, Groupes reductifs sur un corps local: I. Donnees radicielles valuees, Publications Mathematiques de l'IHES, 44(1) (1972), 5-251. https://doi.org/10.1007/BF02715544
- S. Dhompongsa and B. Panyanak, On ∆-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56(10) (2008), 2572-2579. https://doi.org/10.1016/j.camwa.2008.05.036
- K. Goebel and R. Simeon, Uniform convexity, hyperbolic geometry and nonexpansive mappings, Dekker, (1984).
- B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73(6) (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
- S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1) (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
- S.H. Khan and M. Abbas, Strong and ∆-convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl., 61(1) (2011), 109-116. https://doi.org/10.1016/j.camwa.2010.10.037
- J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Gupta, Demiclosedness principle and convergence theorems for Lipschitzian type nonself-mappings in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 23(1) (2018), 73-95.
- K.S. Kim, Existence theorem of a fixed point for asymptotically nonexpansive nonself mapping in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 25(2) (2020), 355-362.
- W.A. Kirk, Geodesic geometry and fixed point theory II. Int. Conf. Fixed Point Theory and Applications, Yokohama Publ., Yokohama, (2004), 113-142.
- W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces. Nonlinear Anal. TMA., 68(12) (2008), 3689-3696. https://doi.org/10.1016/j.na.2007.04.011
- P. Lamba and A. Panwar, A Picard S∗ iterative algorithm for approximating fixed points of generalized α-nonexpansive mappings, SJ. Math. Comput. Sci., 11(3) (2021), 2874-2892.
- T. Laokul and B. Panyanak, Approximating fixed points of nonexpansive mappings in CAT(0) spaces, Int. J. Math. Anal., 25(3) (2009), 1305-1315.
- W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(3) (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
- R. Pant and R. Shukla, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces, Num. Funct. Anal. Opt., 38(2) (2017), 248-266. https://doi.org/10.1080/01630563.2016.1276075
- H. Piri, B. Daraby, S. Rahrovi and M. Ghasemi, Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process, Num. Algorithms, 81(2019), 1129-1148. https://doi.org/10.1007/s11075-018-0588-x
- H.F. Senter and W.G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44(2) (1974), 375-380. https://doi.org/10.1090/S0002-9939-1974-0346608-8
- T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(4) (2008), 1088-1095. https://doi.org/10.1016/j.jmaa.2007.09.023
- B.S. Thakur, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzukis generalized nonexpansive mappings, App. Math. Comp., 275 (2016), 147-155. https://doi.org/10.1016/j.amc.2015.11.065