DOI QR코드

DOI QR Code

FIXED POINT THEOREMS FOR A PAIR OF (α, η, ψ)-GERAGHTY CONTRACTION TYPE MAPS IN COMPLETE METRIC SPACES

  • P. Sudheer Kumar (Department of Mathematics, Aditya Institute of Technology and Management) ;
  • G. V. V. Jagannadha Rao (Department of Mathematics, Kalinga University) ;
  • R. Santhi Kumar (Department of Mathematics, Aditya Institute of Technology and Management) ;
  • P. E. Satyanarayana (Department of Mathematics, Aditya Institute of Technology and Management)
  • Received : 2023.05.06
  • Accepted : 2023.06.13
  • Published : 2024.03.15

Abstract

In this paper, we prove the existence of common fixed point for a pair of α-η-ψ-Geraghty contraction type maps in complete metric spaces using new type of α-admissible. These results extend and generalize some of the previously known results.

Keywords

References

  1. T. Abdeljawad, Meir-Keeler α-contractive fixed and common fixed point theorems, Fixed Point Theory Appl., 19 (2013), 10 pages. 
  2. M. Arshad, A.Hussain and A. Azam, Fixed point of α-Geraghty contraction with appications, U.P.B. Sci. Bull. Series A., 78(2) (2016), 1223-7027. 
  3. S. Banach, Surles operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 3 (1922), 133-181.  https://doi.org/10.4064/fm-3-1-133-181
  4. P. Chaipunya, Y.J. Cho and P. Kumam, Geraghty-type theorems in modular metric spaces with an application to partial differential equation, Adv. Difference Equ., Article number 83, (2012), 2012. 
  5. S. Cho, J. Bae and E. Karapinar, Fixed point theorem for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2013, 329 (2013). 
  6. M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604-608.  https://doi.org/10.1090/S0002-9939-1973-0334176-5
  7. A. Hussain, F. Abdelbasset, E. Karapnar, A. Hind and A. Maha, Fixed Points for (α, βE)-Geraghty Contractions on b-Metric Spaces and Applications to Matrix Equations, Filomat, 33(12) (2019), 3737-3750.  https://doi.org/10.2298/FIL1912737A
  8. A. Hussain and M. Adeel, Remarks on New fixed point theorems for (α, Hθ)-contractions in ordered metric spaces, J. Fixed Point Theory Appl., 21(63) (2019). 
  9. G.V.V. Jagannadha Rao, H.K. Nashine and Z. Kadelburg, Best Proximity point results via simulation functions in Metric-Like Spaces, Kragujevac J. Math., 44(3) (2020), 401-413.  https://doi.org/10.46793/KgJMat2003.401R
  10. J. Janised and D. Kitkuan, Fixed point of (α, ψ)-Geraghty contraction type mappings, Thai J. Math., Special issue, (2016), 37-48. 
  11. E. Karapinar, (α - ψ)-Geraghty contraction type mappings and some related fixed point results, Filomat, 28(1) (2014), 37-48.  https://doi.org/10.2298/FIL1401037K
  12. E. Karapinar, P. Kumam and P. Saimi, On (α, ψ)-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 94, (2013). 
  13. S.K. Padhan, G.V.V. Jagannadha Rao, Hemant Kumar Nashine and R.P. Agarwal, Some Fixed Point Results for (β, ψ1, ψ2)-contractive Conditions in Ordered b-metric-like Spaces, Filomat, 31(14) (2017), 4587-4612.  https://doi.org/10.2298/FIL1714587P
  14. W.B. Raghunath, G.S. Kumar, Ch. Sarla, B. Ramakant and G.V.V. Jagannadha Rao, Fixed point results for materials research, Materials Today: Proceedings, 42 (2021), 1485-1491.  https://doi.org/10.1016/j.matpr.2021.01.324
  15. P. Salimi, A. Latif and N. Hussain, Modified (α - ψ)-Contractive mappings with applications, Fixed Point Theory Appl., 151 (2013) 2013. 
  16. B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α - ψ-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014