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Abstract. In this paper, we prove the existence of common fixed point for a pair of α−η−ψ-

Geraghty contraction type maps in complete metric spaces using new type of α-admissible.

These results extend and generalize some of the previously known results.

1. Introduction and preliminaries

Fixed point theory is one of the out standing subfields of nonlinear func-
tional analysis. It has been used in research area of mathematics and nonlin-
ear sciences. In 1992, Banach [3] proved a fixed point theorem for contraction
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mappings is one of the pivotal results in analysis. This theorem that has been
extended and generalized by several authors.

In 1973, Geraghty [6] studied a generalization of Banach contraction map-
ping principle in a complete metric space. In 2012, Samet Vetro and Vetro
[16] introduced a new concept namely (α,ψ)-contractive type mappings and
established various fixed point theorems for such class of mappings defined
on complete metric spaces. Afterwards, Abdeljawad [1] introduced a pair of
α-admissible mappings and obtained fixed point and common fixed point the-
orems. For more works on α-admissible, we refer [12, 15].

In 2013, Cho, Bae and Karapinar [5] defined the concept of α-Geraghty con-
traction type maps in a metric space and proved the existence and uniqueness
of a fixed point for the mappings satisfying this conditions. Recently, kara-
pinar [11] defined the concept of (α,ψ)-Geraghty contraction type mappings.
For more details we refer [2, 4, 10, 13]. Hussain and Adheel [8] and Hussain
et al. [7] introduced the new contractive-type mapping called θ-contraction
and generalized the Banach contraction principle. Balajee et al. [14] estab-
lished a new class category of nonexpansive mappings in a metric space which
is wider than the class category of mappings satisfying contractive condition.
Jagannadha Rao et al. [9] discussed the existence of best proximity points of
certain mappings via simulation functions in the frame of complete metric-like
spaces.

In this paper, we prove the existence of common fixed point theorem for
a pair of (α, η, ψ)-Geraghty contraction type maps in complete metric spaces
using new type of α-admissible.

In this section, we give the definitions which we use in the later development.

Definition 1.1. ([13]) Let X be a nonempty set. A function α : X × X →
R+ is said to be triangular function if α(x, z) ≥ 1 and α(z, y) ≥ 1 implies
α(x, y) ≥ 1 for x, y, z ∈ X.

Definition 1.2. ([13]) Let X be a nonempty set. Let f : X → X and
α : X × X → R+. We say that f is α-admissible if x, y ∈ X, α(x, y) ≥ 1
implies α(fx, fy) ≥ 1.

Definition 1.3. ([16]) Let X be a nonempty set. Let f, g : X → X and
α : X ×X → R+. We say that f and g are triangular α-admissible if

(i) α is triangular,
(ii) α(x, y) ≥ 1 implies α(fx, gy) ≥ 1 and α(gy, fx) ≥ 1.

Definition 1.4. ([16]) Let X be a nonempty set. Let α, η : X × X → R+

be two functions. We say that α is η triangular if α(x, y) ≥ η(x, y) and
α(y, z) ≥ η(y, z) implies α(x, z) ≥ η(x, z) for x, y, z ∈ X.
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Definition 1.5. ([16]) Let X be a nonempty set. Let f : X → X and
α, η : X × X → R+ be two functions. We say that f is α-admissible with
respect to η if x, y ∈ X, α(x, y) ≥ η(x, y) implies α(fx, fy) ≥ η(fx, fy).

Definition 1.6. ([16]) Let X be a nonempty set. Let f, g : X → X and α, η :
X×X → R+ be two functions. We say that f and g are α-admissible mapping
with respect to η if x, y ∈ X, α(x, y) ≥ η(x, y) implies α(fx, gy) ≥ η(fx, gy)
and α(gy, fx) ≥ η(gy, fx).

Lemma 1.7. Let f, g : X → X be triangular α-admissible maps. Assume
that there exists x0 ∈ X such that α(x0, fx0) ≥ 1 and α(fx0, x0) ≥ 1. Define
sequence {xn} by x2n+1 = fx2n and x2n+2 = gx2n+1 for n = 0, 1, 2, · · · . Then
α(xn, xm) ≥ 1 for all m,n ∈ N ∪ {0}.

Proof. Let x0 ∈ X such that α(x0, fx0) ≥ 1 and α(fx0, x0) ≥ 1, that is,
α(x0, x1) ≥ 1 and α(x1, x0) ≥ 1. By the definition, we have α(fx0, gx1) ≥ 1
and α(gx1, fx0) ≥ 1, that is, α(x1, x2) ≥ 1 and α(x2, x1) ≥ 1. Now α(x2, x1) ≥
1 implies α(fx2, gx1) ≥ 1 and α(gx1, fx2) ≥ 1, that is, α(x3, x2) ≥ 1 and
α(x2, x3) ≥ 1.

By induction it can be proved that α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1
for all n.

Now α(xn, xn+1) ≥ 1 and α(xn+1, xn+2) ≥ 1 implies α(xn, xn+2) ≥ 1. By
induction it can be shown that α(xn, xm) ≥ 1 for n < m and similarly, we can
shown that α(xm, xn) ≥ 1 for m > n. This completes the proof. �

Lemma 1.8. If {Pn} is a sequence in R+ such that ψ(Pn+1) ≤ β(ψ(Pn))ψ(Pn).
Then ψ(Pn)→ 0 as n→∞.

Proof. Assume that {ψ(Pn)} converges to s and {Pn} converges to r (say).

Case (i): β(ψ(Pn)) ≤ λ < 1 (bounded by a quantity less than 1).
Now ψ(Pn+1) < λψ(Pn) for large n ≥ N implies that

ψ(Pn+2) < λψ(Pn+1) < λ2ψ(Pn).

By induction, we get ψ(Pn+k) < λkψ(Pn). Now allowing k → ∞, we have
ψ(Pn+k) → 0. Therefore, s = 0 and ψ(r) ≤ s = 0, implies that ψ(r) = 0, so
that r = 0.

Case (ii): Suppose limβ(ψ(Pn)) = 1. Then there exists nk such that

limβ(ψ(Pnk
)) = 1,

which implies that ψ(Pnk
))→ 0. Hence s = 0. But 0 ≤ ψ(r) ≤ s = 0, so that

ψ(r) = 0. Hence r = 0. �
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We write Γ = {β : [0,∞) → [0, 1)| β(tn) → 1 implies tn → 0} and Ψ =
{ψ : [0,∞)→ [0,∞)|ψ is continuous, monotonically increasing and ψ(0) = 0}.

Theorem 1.9. ([6]) Let (X, d) be a complete metric space and f : X → X be
an operator. If f satisfies the following inequality:

d(fx, fy) ≤ β(d(x, y))d(x, y)

for any x, y ∈ X, where β ∈ Γ, then f has a unique fixed point.

Definition 1.10. ([10]) Let (X, d) be a metric space and α : X×X → R+ be a
function. Two mappings f, g : X → X are called generalized (α,ψ)-Geraghty
contraction type mappings if there exist β ∈ Γ and ψ ∈ Ψ such that for all
x, y ∈ X,

α(x, y)ψ(d(fx, gy)) ≤ β(ψ(M(x, y)))ψ(M(x, y)),

where M(x, y) = max{d(x, y), d(x, fx), d(y, gy), d(y,fx)+d(x,gy)
2 }.

Definition 1.11. ([10]) Let (X, d) be a metric space and α, η : X ×X → R+

be two functions. Two mappings f, g : X → X are called generalized (α, η, ψ)-
Geraghty contraction type mappings if there exist β ∈ Γ and ψ ∈ Ψ such that
for all x, y ∈ X,

α(x, y) ≥ η(x, y)⇒ ψ(d(fx, gy)) ≤ β(ψ(M(x, y)))ψ(M(x, y)),

where

M(x, y) = max
{
d(x, y), d(x, fx), d(y, gy),

d(y, fx) + d(x, gy)

2

}
.

2. Main results

In this section, we prove the existence of common fixed point involving
(α, β, ψ) and η functions in complete metric spaces.

Theorem 2.1. Let (X, d) be a complete metric space and α : X ×X → R+

be a function. Let f, g : X → X be two mappings. Suppose that the following
conditions are satisfied:

(i) f and g is a generalized α− ψ-Geraghty type mappings,
(ii) f and g is triangular α-admissible,

(iii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1 and α(fx0, x0) ≥ 1,
(iv) either f or g is continuous.

Then f and g have common fixed point.
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Proof. Let x1 ∈ X such that x1 = fx0 and x2 = gx1. By induction, we define
a sequence {xn} by x2n+1 = fx2n and x2n+2 = gx2n+1 for n = 0, 1, 2, · · · .
By assumption α(x0, x1) ≥ 1 and f and g are triangular α-admissible and by
Lemma 1.7, we have α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1 for all n ∈ N∪ {0}.

Suppose x2n = x2n+1 for some n, that is, x2n = fx2n. Therefore, x2n is a
fixed point of f .

Now, we show that x2n = x (say) is a fixed point of g. Consider

ψ(d(x2n+1, x2n+2)) = ψ(d(fx2n, gfx2n)) = ψ(d(fx, gfx)),

then

ψ(d(fx, gfx)) ≤ α(x, fx)ψ(d(fx, gfx)) ≤ β(ψ(M(d(x, fx)))).ψ(M(d(x, fx))),

where

M(x, fx) = max{d(x, fx), d(x, fx), d(fx, gfx),
d(fx, fx) + d(x, gfx)

2
}

= max{0, 0, d(x, gx),
d(x, gx)

2
} = d(x, gx).

Therefore, ψ(d(x, gx)) ≤ β(ψ(d(x, gx)))ψ(d(x, gx)) < ψ(d(x, gx)), which is a
contradiction. Therefore, x = gx. Hence, x is a common fixed point of f and
g.

Assume that xn 6= xn+1 for all n. Now

ψ(d(x2n+1, x2n+2)) = ψ(d(fx2n, gx2n+1))

≤ α(x2n, x2n+1)ψ(d(fx2n, gx2n+1))

≤ β(ψ(M(x2n, x2n+1)))ψ(M(x2n, x2n+1)), (2.1)

where

M(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n, fx2n), d(x2n+1, gx2n+1),

d(x2n, gx2n+1) + d(x2n+1, fx2n)

2
}

= max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),

d(x2n, x2n+2) + d(x2n+1, x2n+1)

2
}

= max{d(x2n, x2n+1), d(x2n+1, x2n+2)}.

Therefore, from (2.1), we have

ψ(d(x2n+1, x2n+2)) ≤ β(ψ(M(x2n, x2n+1)))ψ(M(x2n, x2n+1))

≤ β(ψ(d(x2n, x2n+1)))ψ(d(x2n, x2n+1))

< ψ(d(x2n, x2n+1)) (2.2)
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and

ψ(d(x2n+2, x2n+3)) ≤ ψ(d(gx2n+1, fx2n+2))

= ψ(d(fx2n+2, gx2n+1))

≤ α(x2n+2, x2n+1)ψ(d(fx2n+2, gx2n+1))

≤ β(ψ(M(x2n+2, x2n+1)))ψ(M(x2n+2, x2n+1)), (2.3)

where

M(x2n+2, x2n+1) = max{d(x2n+2, x2n+1), d(x2n+2, fx2n+2), d(x2n+1, gx2n+1),

d(x2n+2, gx2n+1) + d(x2n+1, fx2n+2)

2
}

= max{d(x2n+2, x2n+1), d(x2n+2, x2n+3), d(x2n+1, x2n+2),

d(x2n+2, x2n+2) + d(x2n+1, x2n+3)

2
}

= max{d(x2n+2, x2n+1), d(x2n+2, x2n+3)}

and

ψ(d(x2n+2, x2n+3)) ≤ β(ψ(d(x2n+2, x2n+1)))ψ(d(x2n+2, x2n+1))

≤ β(ψ(d(x2n, x2n+1)))ψ(d(x2n, x2n+1))

< ψ(d(x2n+2, x2n+1)). (2.4)

From (2.2) and (2.4), we have ψ(d(xn+1, xn+2)) < ψ(d(xn, xn+1)) for all n ∈
N ∪ {0}. Therefore,

d(xn+1, xn+2) ≤ d(xn, xn+1)

for all n ∈ N ∪ {0}. Hence {ψ(d(xn+1, xn+2))} is decreasing sequence, and it
converges to say s(≥ 0). And so, {d(xn+1, xn+2)} is decreasing sequence, and
it converges to say r(≥ 0). Now,

ψ(d(xn+1, xn+2)) ≤ β(ψ(M(xn, xn+1)))ψ(M(xn, xn+1))

≤ β(ψ(d(xn, xn+1)))ψ(d(xn, xn+1)).

By Lemma 1.8, we have s = 0 and hence r = 0.
Now, we show that the sequence {xn} is Cauchy. Suppose {xn} is not

Cauchy. Then there exists ε > 0 and sequences {xmk
} and {xnk

} such that
for all k > 0, we have mk > nk > k, d(xmk

, xnk
) ≥ ε and d(xmk−1, xnk

) < ε.
Suppose nk is even and mk is odd for infinitely many n. Now

ψ(d(xnk+1, xmk+2)) = ψ(d(fxnk
, gxmk+1))

≤ α(xnk
, xmk+1)ψ(d(fxnk

, gxmk+1))

≤ β(ψ(M(xnk
, xmk+1)))ψ(M(xnk

, xmk+1)).
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On letting k →∞, we have

ψ(ε) ≤ limβ(ψ(M(xnk
, xmk+1)))ψ(ε)

≤ limβ(ψ(M(xnk
, xmk+1)))ψ(ε)

≤ ψ(ε).

Therefore, the limit exists and equal to 1. Hence ψ(M(xnk
, xmk+1)) → 0,

implies that ψ(ε) = 0. Hence we have ε = 0 which is a contradiction.
Similarly, we can proceed in the above manner for other cases. Therefore,

sequence {xn} is Cauchy.
Since X is complete, there exists x∗ ∈ X such that xn → x∗ implies that

x2n+1 → x∗ and x2n+2 → x∗. Since f and g are continuous, we get x2n+1 =
fx2n → fx∗ and x2n+2 = gx2n+1 → gx∗. Hence by uniqueness of limit, we
have fx∗ = x∗ and gx∗ = x∗. Therefore, fx∗ = gx∗ = x∗. Hence f and g have
a common fixed point x∗ in X. �

Theorem 2.2. Suppose hypothesis of Theorem 2.1 except (iv) holds. Fur-
ther assume that {zn} is a sequence in X such that α(zn, zn+1) ≥ 1 and
α(zn+1, zn) ≥ 1 for all n ∈ N ∪ {0} and zn → z∗ as n → ∞, then there
exists a subsequence {znk

} of {zn} such that α(znk
, z∗) ≥ 1 and α(z∗, znk

) ≥ 1
for all k. Then f and g have common fixed point.

Proof. Following the proof of Theorem 2.1, we get the sequence {xn} is Cauchy
and hence convergent to x∗ (upto this stage we did not use the continuity of
either f or g). Also we have shown that α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1
for n = 0, 1, 2, · · · .

Now from our assumption there is a subsequence {xnk
} of {xn} such that

α(xnk
, x∗) ≥ 1 and α(z∗, znk

) ≥ 1 for all k. Then, there exists a subsequence
{nkl} of {nk} such that either nkl even for all l or nkl odd for all l. Without
loss of generality, we may suppose that nkl is even for all l. Hence nkl can be
written as nkl = 2ml. Since α(x2ml

, x∗) ≥ 1, suppose gx∗ 6= x∗. Now

ψ(d(x2ml+1, gx
∗)) = ψ(d(fx2ml

, gx∗))

≤ α(x2ml
, x∗)ψ(d(fx2ml

, gx∗))

≤ β(ψ(M(x2ml
, x∗)))ψ(M(x2ml

, x∗)),

where

M(x2ml
, x∗) = max

{
d(x2ml

, x∗), d(x2ml
, fx2ml

), d(x∗, gx∗),

1

2

[
d(x2ml

, gx∗) + d(x∗, fx2ml
)
]}
.

Therefore, M(x2ml
, x∗) = d(x∗, gx∗) for large l. Hence, for large l,

ψ(d(x2ml+1, gx
∗)) ≤ β(ψ(d(x∗, gx∗)))ψ(d(x∗, gx∗)).
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On letting l→∞, we have

ψ(d(x∗, gx∗)) ≤ β(ψ(d(x∗, gx∗)))ψ(d(x∗, gx∗))

< ψ(d(x∗, gx∗)),

which is a contradiction. Therefore, x∗ = gx∗. Similarly, we can show that
x∗ = fx∗. Which shows that x∗ is the common fixed point of f and g. �

Theorem 2.3. Let (X, d) be a complete metric space and α : X ×X → R+

be a function. Let f, g : X → X be two mappings. Suppose that the following
conditions are satisfied:

(i) f and g are generalized (α, η, ψ)-Geraghty type mappings,
(ii) f and g are triangular α-admissible with respect to η,

(iii) there exists x0 ∈ X such that α(x0, fx0) ≥ η(x0, fx0) and
α(fx0, x0) ≥ η(fx0, x0),

(iv) either f or g is continuous.

Then f and g have common fixed point.

Proof. Let x1 ∈ X such that x1 = fx0 and x2 = gx1. Then, by induc-
tion, we define a sequence {xn} by x2n+1 = fx2n and x2n+2 = gx2n+1 for
n = 0, 1, 2, · · · . By assumption α(x0, fx0) ≥ η(x0, fx0), that is, α(x0, x1) ≥
η(x0, x1) and f and g are triangular α-admissible with respect to η, we have
α(fx0, gx1) ≥ η(fx0, gx1) and α(gx1, fx0) ≥ η(gx1, fx0), that is, α(x1, x2) ≥
η(x1, x2) and α(x2, x1) ≥ η(x2, x1). By induction, we get

α(xn, xn+1) ≥ η(xn, xn+1)

and

α(xn+1, xn) ≥ η(xn+1, xn)

for every n. Assume that xn 6= xn+1 for all n. Now

ψ(d(x2n+1, x2n+2)) = ψ(d(fx2n, gx2n+1))

≤ β(ψ(M(x2n, x2n+1)))ψ(M(x2n, x2n+1)), (2.5)

where

M(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n, fx2n), d(x2n+1, gx2n+1),

d(x2n, gx2n+1) + d(x2n+1, fx2n)

2
}

= max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),

d(x2n, x2n+2) + d(x2n+1, x2n+1)

2
}

= max{d(x2n, x2n+1), d(x2n+1, x2n+2)}.
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Therefore, from (2.5), we have

ψ(d(x2n+1, x2n+2)) ≤ β(ψ(d(x2n, x2n+1)))ψ(d(x2n, x2n+1))

< ψ(d(x2n, x2n+1)) (2.6)

and

ψ(d(x2n+2, x2n+3)) = ψ(d(gx2n+1, fx2n+2))

= ψ(d(fx2n+2, gx2n+1))

≤ β(ψ(M(x2n+2, x2n+1)))ψ(M(x2n+2, x2n+1)), (2.7)

where

M(x2n+2, x2n+1) = max{d(x2n+2, x2n+1), d(x2n+2, fx2n+2), d(x2n+1, gx2n+1),

d(x2n+1, fx2n+2) + d(x2n+2, gx2n+1)

2
}

= max{d(x2n+2, x2n+1), d(x2n+2, x2n+3), d(x2n+1, x2n+2),

d(x2n+1, x2n+3) + d(x2n+2, x2n+2)

2
}

= max{d(x2n+2, x2n+1), d(x2n+2, x2n+3)}.

Therefore, from (2.7), we have

ψ(d(x2n+2, x2n+3)) ≤ β(ψ(d(x2n+1, x2n+2)))ψ(d(x2n+1, x2n+2))

< ψ(d(x2n+1, x2n+2)). (2.8)

From (2.6) and (2.8), we have, for every n,

ψ(d(x2n+1, x2n+2)) < ψ(d(x2n, x2n+1)). (2.9)

Hence, {ψ(d(xn+1, xn+2))} is a decreasing sequence, so converges to say s(≥ 0).
Hence, {d(xn+1, xn+2)} is a decreasing sequence, so converges to say r(≥ 0).
Now,

ψ(d(xn+1, xn+2)) ≤ β(ψ(M(xn, xn+1)))ψ(M(xn, xn+1))

≤ β(ψ(d(xn, xn+1)))ψ(d(xn, xn+1)).

By Lemma 1.8, we have s = 0 and hence r = 0.
Now we show that the sequence {xn} is Cauchy. Suppose {xn} is not

Cauchy. Then, there exists ε > 0 and sequences {xmk
} and {xnk

} such that
for all k > 0, we have mk > nk > k, d(xmk

, xnk
) ≥ ε and d(xmk−1, xnk

) < ε.
Suppose nk is even and mk is odd for infinitely many n. Now

ψ(d(xnk+1, xmk+2)) = ψ(d(fxnk
, gxmk+1))

≤ β(ψ(M(xnk
, xmk+1)))ψ(M(xnk

, xmk+1)).
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On letting k →∞, we have

ψ(ε) ≤ limβ(ψ(M(xnk
, xmk+1)))ψ(ε)

≤ limβ(ψ(M(xnk
, xmk+1)))ψ(ε)

≤ ψ(ε).

Therefore, the limit exists and equal to 1. Hence ψ(M(xnk
, xmk+1)) → 0,

implies that ψ(ε) = 0. Hence ε = 0, which is a contradiction.
Similarly, we can proceed in the above manner for other cases. Therefore

sequence {xn} is Cauchy. Since X is complete, there exists x∗ ∈ X such
that xn → x∗ implies that x2n+1 → x∗ and x2n+2 → x∗. Since f and g
are continuous, we get x2n+1 = fx2n → fx∗ and x2n+2 = gx2n+1 → gx∗.
Hence by uniqueness of limit, we have fx∗ = x∗ and gx∗ = x∗. Therefore
fx∗ = gx∗ = x∗. Hence f and g have a common fixed point x∗ in X. �

Theorem 2.4. Suppose hypothesis of Theorem 2.3 except (iv) holds. Further
assume that {zn} is a sequence in X such that α(zn, zn+1) ≥ η(zn, zn+1) and
α(zn+1, zn) ≥ η(zn+1, zn) for all n ∈ N ∪ {0} and zn → z∗ as n → ∞, then
there exists a subsequence {znk

} of {zn} such that α(znk
, z∗) ≥ η(znk

, z∗) and
α(z∗, znk

) ≥ η(z∗, znk
) for all k. Then f and g have common fixed point.

Proof. Following the proof of Theorem 2.3 we get the sequence {xn} is Cauchy
and hence convergent to x∗. Also we have shown that α(xn, xn+1) ≥ η(xn, xn+1)
for n = 0, 1, 2, · · · .

Now from our assumption there is a subsequence {xnk
} of {xn} such that

α(xnk
, x∗) ≥ η(xnk

, x∗) for all k. There exists subsequence {nkl} of {nk} such
that either nkl is even for all l or nkl is odd for all l. Without loss of generality,
we may suppose that nkl is even for all l. Then nkl can be written as nkl = 2ml.
Since α(x2ml

, x∗) ≥ η(x2ml
, x∗), suppose gx∗ 6= x∗.

Now

ψ(d(x2ml+1, gx
∗)) = ψ(d(fx2ml

, gx∗))

≤ β(ψ(M(x2ml
, x∗)))ψ(M(x2ml

, x∗)),

where

M(x2ml
, x∗) = max

{
d(x2ml

, x∗), d(x2ml
, fx2ml

), d(x∗, gx∗),

1

2
[d(x2ml

, gx∗) + d(x∗, fx2ml
)]
}
.

Hence M(x2ml
, x∗) = d(x∗, gx∗) for large l. Therefore, for large l,

ψ(d(x2ml+1, gx
∗)) ≤ β(ψ(d(x∗, gx∗)))ψ(d(x∗, gx∗)).
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On letting l→∞, we have

ψ(d(x∗, gx∗)) ≤ β(ψ(d(x∗, gx∗)))ψ(d(x∗, gx∗))

< ψ(d(x∗, gx∗)),

which is a contradiction. x∗ = gx∗. Similarly, we can show that x∗ = fx∗.
Thus x∗ = fx∗ = gx∗. Which shows that x∗ is the common fixed point of f
and g. This completes the proof. �
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