• Title/Summary/Keyword: General Walking

Search Result 306, Processing Time 0.029 seconds

A Study on Energy Efficiency of Quadruped Walking Robot (4족 보행 로봇의 에너지효율에 관한 연구)

  • 안병원;배철오;박영산;박중순;이성근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.309-312
    • /
    • 2003
  • Though a legged robot has high terrain adaptability as compared with a wheeled vehicle, its moving speed is considerably low in general. For attaining a high moving speed with a legged robot, a dynamically stable walking, such as running for a biped robot and a trot gait or a bound gait for a quadruped robot, is a promising solution. However, energy efficiency of a dynamically stable walking is generally lower than the efficiency of a stable gait such as a crawl gait. In this paper, we present an experimental study on the energy efficiency of a quadruped walking vehicle. Energy consumption of two walking patterns for a trot gait is investigated though experiments using a TITAN-VIII.

  • PDF

Real-Time CoM/ZMP Trajectory Transformation Method for Humanoid Robots Considering Structure Characteristics (구조 특성을 반영한 인간형 로봇을 위한 실시간 CoM/ZMP 궤적 변환 방법)

  • Hong, Seok-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.132-137
    • /
    • 2017
  • This paper proposes a transformation method of the zero moment point (ZMP) and the center of mass (CoM) from one walking pattern to other patterns by considering the structure of a robot or walking situations in real time. In general, a humanoid robot has own structure characteristics like height and mass. The structure characteristics make the given CoM/ZMP walking pattern of one human or one humanoid robot to be difficult to apply to other robot directly. For this purpose, we analyze the characteristics of walking patterns according to the step length, duration of walking support phase and the CoM height by using the cart-table model as the simple humanoid robot model. A transformation equation is derived from the analyzation and it is verified with simulation.

A Computer Simulation on the Efficiency of Energy Consumption for Quadruped Walking Robot (4족 보행로봇의 소비에너지 효율에 관한 시뮬레이션)

  • Ahn Byong-Won;Bae Cherl-o;Eom Han-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1247-1252
    • /
    • 2005
  • Though a legged robot has a high terrain adaptability as compared with a wheeled robot, its moving speed is considerably low in general. For attaining a high moving speed with a logged robot, a dynamically stable walking is a promising solution. However, the energy efficiency of a dynamically stable walking is generally lower than the efficiency of a stable gait such as a crawl gait. In this paper, energy consumption of two walking patterns for a trot gait is simulated through modeling a quadruped walking robot named TITAN-VIII.

Optimal Force Distribution for Quadruped Walking Robots with a Failed Leg (고장 난 다리가 있는 사족 보행 로봇을 위한 최적 힘 배분)

  • Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.614-620
    • /
    • 2009
  • The force distribution in multi-legged robots is a constrained, optimization problem. The solution to the problem is the set points of the leg contact forces for a particular system task. In this paper, an efficient and general formulation of the force distribution problem is developed using linear programming. The considered walking robot is a quadruped robot with a locked-joint failure, i.e., a joint of the failed leg is locked at a known place. For overcoming the drawback of marginal stability in fault-tolerant gaits, we define safety margin on friction constraints as the objective function to be maximized. Dynamic features of locked-joint failure are represented by equality and inequality constraints of linear programming. Unlike the former study, our result can be applied to various forms of walking such as crab and turning gaits. Simulation results show the validity of the proposed scheme.

The Effects of Clinical Characteristics of Chronic Stroke Patients on Physiological Cost Index During Walking (만성 뇌졸중 환자의 임상적 특성이 보행 시 생리적 부담지수에 미치는 영향)

  • Kim, Won-Ho
    • Physical Therapy Korea
    • /
    • v.13 no.1
    • /
    • pp.32-37
    • /
    • 2006
  • The purpose of this study was to investigate the effects of clinical characteristics of chronic stroke patients on physiological cost index (PCI) during walking. Fourteen stroke patients participated in this study. To investigate the clinical characteristics, Fugl-Meyer score (FMS), gait velocity (GV), muscle strength of the knee extensor, modified Ashworth scale (MAS) of ankle plantar flexor, devices, and gait patterns during walking were measured and analyzed. The results were as follows: Firstly, use of devices and high MAS of the ankle plantar flexor significantly increased PCI. Secondly, PCI was significantly correlated with the FMS and MAS of the ankle plantar flexor. In conclusion, inhibition of spasticity of the ankle plantar flexor is considered to reduce PCI during walking for chronic stroke patients.

  • PDF

The Effect of Otago Exercise Program on Balance, Walking and Falls Efficacy in Patients with Total Knee Replacement (슬관절 전치환술 환자에서 대한 오타고 운동프로그램이 균형, 보행능력, 낙상 효능감에 미치는 영향)

  • Song, Hyun-seung;Lee, Jae-nam;Han, Hyo-jin
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Background: The aim of this study was to conduct an Otago exercise program with total knee replacement patient (TKR) in a clinical setting and ascertain its effects on balance, walking ability and falls efficacy. Methods: The participating subjects were 30 people who had been diagnosed with TKR. They were assigned to two groups (Exp; Otago exercise and general physical therapy, n=15; Con; balance exercise and general physical therapy, n=15), and the exercises were conducted for three sessions per week for four weeks. The main balance outcomes were evaluated using the timed up and go test (TUG), while walking ability was evaluated using the 10m walk test (10MWT), direction change ability was measured using the figure 8 of walk test (F8WT), and the decrease of fear was evaluated using the modified falls efficacy scale (MFES). Results: In the analysis results, the Exp group showed significant increases in TUG, 10MWT, and F8WT within the both groups. There were significant differences in all variables between the Exp group and the Con group at the post-intervention evaluation, but there was no significant difference between the groups with respect to the TUG. Conclusion: The results of this study demonstrated that Otago exercise would be useful to improve balance and walking for TKR patients who want to improve their abilities and activities of daily living.

Effects of Muscle Energy Technique on Knee Extensor Muscle Strength, Knee Range of Motion, Balance, and Walking Ability in Elderly Women during the Chronic Phase after Total Knee Replacement (슬관절 전치환술 후 만성기 여성 노인의 슬관절 신전근에 근에너지기법이 근력, 관절가동범위, 균형, 보행능력에 미치는 영향)

  • Song, Hyoung-bong;Park, Gun-hong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.2
    • /
    • pp.55-67
    • /
    • 2021
  • Background: This study aimed to use the muscle energy technique (MET) with total knee replacement (TKR) during the chronic phase in a clinical setting and confirm its effects on the knee extensor strength and ROM, balance, and walking ability. Methods: A total of 20 female patients who underwent TKR 1~4 years ago were assigned to two groups (Control: Q setting exercise+general physical therapy, n=10; Exp: MET+general physical therapy, n=10). Interventions were performed three times a week for 4 weeks. The strength of the knee extensor was evaluated using an aneroid sphygmomanometer, and ROM was evaluated using degrees at the end range on active knee flexion. The main balance outcomes were evaluated using two standard scale (TSS) and timed up and go (TUG) test, whereas the walking ability was evaluated using the 10 meter walk test (10MWT). Results: Analysis showed that both groups had significant increases in strength, ROM, TSS, TUG, and 10MWT. Differences in all variables were significant between the control and Exp groups at the post-intervention evaluation (p<.05). However, no significant difference was observed in strength and TUG. Conclusion: Results of this study demonstrated that MET would help improve the strength, ROM, balance, and walking ability of patients with chronic TKR who want to enhance their abilities and performance in activities of daily living.

Effect of Knee Stabilization Exercise on Balance and Walking Ability in Patients with Total Knee Replacement (무릎관절 전치환술 환자에게 적용한 무릎 안정화 운동이 균형과 보행능력에 미치는 영향)

  • Park, Geun-hong;Kim, Tae-won;Song, Hyoung-bong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.2
    • /
    • pp.69-76
    • /
    • 2021
  • Background: Degenerative arthritis accounts for a large portion of the elderly, causing a lot of inconvenience in daily life. Total knee replacement (TKR) are performed to relieve pain in the knee joint. The purpose of this study was to determine whether knee joint stabilization exercises are effective in improving balance and walking ability in degenerative arthritis patients who have undergone TKR. Methods: A total of 30 TKR patients participated in this study. They were assigned to two groups. The experimental group, the group that underwent knee stabilization exercises, joint mobilization and general physical therapy. On the other hand, and the controlled group, the group that underwent joint mobilization and general physical therapy. All exercises were conducted thrice a week, for four weeks. The main balance outcomes were evaluated using the posture balance training system, while walking ability was assessed using a wireless 3-axis accelerometer. Results: The experimental group had significantly higher scores in postural stability testing (PST), limits stability testing, and waling ability. The post-intervention evaluation, there were significant differences in all variables between the two groups. However, no significant difference was noted in the foam eyes closed test in PST. Conclusion: This study suggests that knee joint stabilization exercises effectively improve the balance and walking ability of TKR patients. Thus, it could be presented as useful in clinical practice.

The Biomechanical Evaluation of New Walking-shoes (신 워킹 전문화의 생체역학적 기능성 평가)

  • Kim, Eui-Hwan;Chung, Chae-Wook;Lim, Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.193-205
    • /
    • 2006
  • This study was to analysis the kinematic and kinetic differences between new walking shoe(NWS : RYN) and general walking shoe(GWS). The subjects for this study were 10 male adults who had the walking pattern of rearfoot shrike with normal foot. The movement of one lower leg was measured using plantar pressure and Vicon Motion Analysis Program(6 MX13 and 2 MX40 cameras : 100 f / s) while the subjects walked at the velocity(1.5m/s. on 2m).. The results of this study was as follows : 1. The NWS was better than the GWS that caused injuries such as adduction, abduction and pronation are reduced While walking on a perpendicular surface, the landing angle and the knees angles were extensive which makes walking more safe which reduces anxiety and uneasiness. 2. The bottom of the NWS were now made into a more circular arch which supports the weight of the body and reduces the irregular angles when wearing GWS. This arch made the supporting area more wide which made the upholding the trunk of the body more effective. The whole bottom of the foot that supports the weight is more flexible in addition, increases the safeness of walking patterns and the momentum of the body. 3. The moment the heel of the foot of the NWS touch the ground, the range of the pressure were partially notable and the range of the pressure on the upper part of the thigh were dispersed The injuries that occurred while walking. primary factors when a shock related injuries are reduced Judgements of the impacts of the knees and the spinal column dispersing could be made.

Intelligent Control of a Virtual Walking Machine for Virtual Reality Interface (가상현실 대화용 가상걸음 장치의 지능제어)

  • Yoon, Jung-Won;Park, Jang-Woo;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.926-934
    • /
    • 2006
  • This paper proposes intelligent control of a virtual walking machine that can generate infinite floor for various surfaces and can provide proprioceptive feedback of walking to a user. This machine allows users to participate in a life-like walking experience in virtual environments with various terrains. The controller of the machine is implemented hierarchically, at low-level for robust actuator control, at mid-level fur platform control to compensate the external forces by foot contact, and at high-level control for generating walking trajectory. The high level controller is suggested to generate continuous walking on an infinite floor for various terrains. For the high level control, each independent platform follows a man foot during the swing phase, while the other platform moves back during single stance phase. During double limb support, two platforms manipulate neutral positions to compensate the offset errors generated by velocity changes. This control can, therefore, satisfy natural walking conditions in any direction. Transition phase between the swing and the stance phases is detected by using simple switch sensor system, while human foot motions are sensed by careful calibration with a magnetic motion tracker attached to the shoe. Experimental results of walking simulations at level ground, slope, and stairs, show that with the proposed machine, a general person can walk naturally on various terrains with safety and without any considerable disturbances. This interface can be applied to various areas such as VR navigations, rehabilitation, and gait analysis.