• Title/Summary/Keyword: General Assembly

Search Result 322, Processing Time 0.025 seconds

A Misalignment Compensation Algorithm for Flexible Parts Assembly (유연 부품 조립을 위한 횡방향 오차의 보정 알고리즘)

  • 김진영;조형석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.841-847
    • /
    • 1999
  • For successful assembly of flexible parts, informations about their deformation as well as possible misalignments between the holes and their mating parts are essential. Such informations can be acquired from visual sensors. For robotic assembly, the corrective assembly motion to compensate for such misalignments has to be determined from the measured informations. However, this may not be simply derived from the measured misalignment alone because the part deformation progressively occurs during misalignment compensation. Based on the analysis of flexible parts assembly process, this paper presents a neural net-based inference system that can infer the complex relationship between the corrective motion and the measured information of parts deformation and misalignments. And it verifies the performance of the implemented inference system. The results show that the proposed neural net-based misalignment compensation algorithm Is effective in compensating for the lateral misalignment, and that it can be extended to the assembly tasks under more general conditions.

  • PDF

Assembly Sequence Determination from Design Data Using Voxelization (복셀화를 통한 디자인 데이타로부터의 조립순서 결정)

  • Lee, Changho;Cho, Hyunbo;Jung, Mooyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.90-101
    • /
    • 1996
  • Determination of assembly sequence of components is a key issue in assembly operation. Although a number of articles dealing with assembly sequence determination have appeared, an efficient and general methodology for complex products has yet to appear. The objective of this paper is to present the problems and models used to generate assembly sequence from design data. An essential idea of this research is to acquire a finite number of voxels from any complex geometric entity, such as 3D planar polygons, hollow spheres, cylinders. cones, tori, etc. In order to find a feasible assembly sequence, the following four steps are needed: (1) The components composing of an assembly product are identified and then the geometric entities of each component are extracted. (2) The geometric entities extracted in the first step are translated into a number of voxels. (3) All the mating or coupling relations between components are found by considering relations between voxels. (4) The components to be disassembled are determined using CCGs (Component Coupling Graph).

  • PDF

Development of the General Inspection-Machine for the Vehicle Forming Assembly (자동차 성형 조립품을 위한 범용 검사기 개발)

  • Kim, Dong-Hwan;Yun, Jae-Sik;Kim, Jin-Wook;Kim, Seok-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.813-815
    • /
    • 2011
  • This study inspects the fault of the vehicle forming assembly and the assembly state of components at high speed and high degree of precision. This study also proposes the general inspection system capable of adapting to a number of products. The inspection program is composed of the fault inspection algorithm to examine the surface of the object and the state of the assembly and the high speed procession algorithm for the real time examination. The fault inspection algorithm is processed largely by a method using average of pixel in ROI and a method dividing the area and checking the presence of the object. Lastly, we verified the efficiency of the sysytem through the evaluation of its accuracy and processing time.

  • PDF

Ship block assembly sequence planning considering productivity and welding deformation

  • Kang, Minseok;Seo, Jeongyeon;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.450-457
    • /
    • 2018
  • The determination of assembly sequence in general mechanical assemblies plays an important role in terms of manufacturing cost, duration and quality. In the production of ships and offshore plants, the consideration of productivity factors and welding deformation is crucial in determining the optimal assembly sequence. In shipbuilding and offshore industries, most assembly sequence planning has been done according to engineers' decisions based on extensive experience. This may result in error-prone planning and sub-optimal sequence, especially when dealing with unfamiliar block assemblies composed of dozens of parts. This paper presents an assembly sequence planning method for block assemblies. The proposed method basically considers geometric characteristics of blocks to determine feasible assembly sequences, as well as assembly process and productivity factors. Then the assembly sequence with minimal welding deformation is selected based on simplified welding distortion analysis. The method is validated using an asymmetric assembly model and the results indicate that it is capable of generating an optimal assembly sequence.

Current semiconductor Packaging in Japan

  • Nishi, Kunihiko
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 1999.12a
    • /
    • pp.45-61
    • /
    • 1999
  • General trend in electronics industry towards multimedia in the 21 century is presented here. All equipments require fast graphic processing together with thin and lightweight assembly technology. In Japan, CSP was developed and applied to mobile equipments for several years, and recently stacked die assembly technology is being developed. In addition, so-called flip chip technology is also being developed and which is applied to MCP and MCM little by little these days. Here current packaging technology in Japan is presented including above.

  • PDF

Development of a Fast Alignment Method of Micro-Optic Parts Using Multi Dimension Vision and Optical Feedback

  • Han, Seung-Hyun;Kim, Jin-Oh;Park, Joong-Wan;Kim, Jong-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.273-277
    • /
    • 2003
  • A general process of electronic assembly is composed of a series of geometric alignments and bonding/screwing processes. After assembly, the function is tested in a following process of inspection. However, assembly of micro-optic devices requires both processes to be performed in equipment. Coarse geometric alignment is made by using vision and optical function is improved by the following fine motion based on feedback of tunable laser interferometer. The general system is composed of a precision robot system for 3D assembly, a 3D vision guided system for geometric alignment and an optical feedback system with a tunable laser. In this study, we propose a new fast alignment algorithm of micro-optic devices for both of visual and optical alignments. The main goal is to find a fastest alignment process and algorithms with state-of-the-art technology. We propose a new approach with an optimal sequence of processes, a visual alignment algorithm and a search algorithm for an optimal optical alignment. A system is designed to show the effectiveness and efficiency of the proposed method.

  • PDF

Constraint Analysis and Reduction of Over-Constraints for Tolerance Design of Assemblies - A Case Study of Ball Valve Design (조립체 공차설계를 위한 제약해석과 과잉제약 개선 - 볼밸브 설계 사례연구)

  • Park, Jun Il;Yim, Hyunjune
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.669-681
    • /
    • 2016
  • Mechanical designers often make mistakes that result in unwanted over-constraints, causing difficulty in assembly operations and residual stress due to interference among parts. This study is concerned with detection and elimination of over-constraints. Screw theory is a general method that is used for constraint analysis of an assembly and motion analysis of a mechanism. Mechanical assemblies with plane-plane, pin-hole, and pin-slot constraint pairs are analyzed using screw theory to illustrate its utility. As a real-world problem, a ball valve design is analyzed using the same method, and several unwanted over-constraints are detected. Elimination measures are proposed. Nominal dimensions of some parts are adjusted, and dimensions and tolerances of the pins and holes are modified using the virtual condition boundary concept. The revised design is free of over-constraints. General procedure for applying screw theory to constraint analysis is established and demonstrated; it will contribute to improving quality of assembly designs.

Seismic behavior of fuel assembly for pressurized water reactor

  • Jhung, Myung J.;Hwang, Won G.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.157-171
    • /
    • 1994
  • A general approach to the dynamic time-history analysis of the reactor core is presented in this paper as a part of the fuel assembly qualification program. Several detailed core models are set up to reflect the placement of the fuel assemblies within the core shroud. Peak horizontal responses are obtained for each model for the motions induced form earthquake. The dynamic responses such as fuel assembly deflected shapes and spacer grid impact loads are carefully investigated. Also, the sensitivity responses are obtained for the earthquake motions and the fuel assembly non-linear response characteristics are discussed.

Development of Common Document Structure based on XML for Representing Mechanical Part Assembly Information (기계 조립품 정보의 표현을 위한 XML 기반 공용문서 구조 개발)

  • 정태형;박승현;윤성원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.359-364
    • /
    • 2002
  • In engineering design environment it is hard to link design data and system because the types of them are disparate. Therefore, the importance of metadata has increased. Some researches have been executed to develop metadata. But they cannot interact with other metadata and are difficult to extend. The purpose of this paper is to develop a common metadata structure which represents the general information of mechanical part assembly using XML, and to use it as base documents in order to integrate design data and systems. It is composed of part and assembly documents. Part document represents the information of a part independently to part type. Assembly document represents the location of part documents which compose an assembly. Common documents can be used as a broker between design data and systems and improve interpretability and reusability of document. We applied the developed common document structure to 2-stage spur gear drive.

  • PDF

Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics

  • Chen, Lin;Sun, Limin;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.627-643
    • /
    • 2015
  • Negative stiffness, previously emulated by active or semi-active control for cable vibration mitigation, is realized passively using a self-contained highly compressed spring, the negative stiffness device (NSD).The NSD installed in parallel with a viscous damper (VD) in the vicinity of cable anchorage, enables increment of damper deformation during cable vibrations and hence increases the attainable cable damping. Considering the small cable displacement at the damper location, even with the weakening device, the force provided by the NSD-VD assembly is approximately linear. Complex frequency analysis has thus been conducted to evaluate the damping effect of the assembly on the cable; the displacement-dependent negative stiffness is further accounted by numerical analysis, validating the accuracy of the linear approximation for practical ranges of cable and NSD configurations. The NSD is confirmed to be a practical and cost-effective solution to improve the modal damping of a cable provided by an external damper, especially for super-long cables where the damper location is particularly limited. Moreover, mathematically, a linear negative stiffness and viscous damping assembly has proven capability to represent active or semi-active control for simplified cable vibration analysis as reported in the literature, while in these studies only the assembly located near cable anchorage has been addressed. It is of considerable interest to understand the general characteristics of a cable with the assembly relieving the location restriction, since it is quite practical to have an active controller installed at arbitrary location along the cable span such as by hanging an active tuned mass damper. In this paper the cable frequency variations and damping evolutions with respect to the arbitrary assembly location are then evaluated and compared to those of a taut cable with a viscous damper at arbitrary location, and novel frequency shifts are observed. The characterized complex frequencies presented in this paper can be used for preliminary damping effect evaluation of an adaptive passive or semi-active or active device for cable vibration control.