• Title/Summary/Keyword: Gene repression

Search Result 169, Processing Time 0.04 seconds

Optimization of Fermentation Conditions for Production of Recombinant Human Interleukin-2 in Escherichia coli (대장균에서의 재조합 인체 인터루킨-2 생산을 위한 발효조건 최적화)

  • Lee, In-Young;Kim, Myung-Kuk;Na, Doe-Sun;Hahm, Kyung-Soo;Moon H. Han;Lee, Sun-Bok
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.4
    • /
    • pp.327-333
    • /
    • 1988
  • For optimal production of recombinant human interleukin-2 (IL-2) in E. coli the effect of fermentation conditions on cell growth, IL-2 production, and stability of recombinant cells were investigated. Among the complex nutrients tested in this work, yeast extract, peptone and corn steep liquor were found to be effective for recombinant cell growth. The recombinant cells were maintained stably under repression condition (3$0^{\circ}C$), but the stability of recombinant cells were drastically reduced upon induction of IL-2 expression (42$^{\circ}C$) even under the selection pressure. Addition of antibiotics to the culture medium resulted in the cell growth inhibition without significant improvement in recombinant stability. When the expression of IL-2 gene was induced at different growth phases, highest IL-2 production was achieved by the induction of IL-2 at the middle-exponential growth phase. It was found that the production of IL-2 significantly inhibited the cell growth and the ex-pression of other genes in the plasmid.

  • PDF

Isolation and Characterization of a Novel Agar Degrading Bacterium, Alteromonas macleodii subsp. GNUM08120, from Red Macroalgae (홍조류로부터 신규 한천분해미생물 Alteromonas macleodii subsp. GNUM08120의 분리 및 동정)

  • Chi, Won-Jae;Lim, Ju-Hyeon;Park, Da Yeon;Kim, Mu-Chan;Kim, Chang-Joon;Chang, Yong-Keun;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • An agar-hydrolyzing marine bacterium, strain GNUM08120, was isolated from Sargassum fulvellum collected from Yeongil bay of East Sea of Korea. The isolate was Gram-negative, aerobic, motile with single polar flagellum, and grew at 1-10% NaCl, pH 5.0-8.0, and $15-37^{\circ}C$. G+C content and the predominant respiratory quinone were 46.13 mol% and Q-8, respectively. The major cellular fatty acids were Summed feature 3 (24.5%), $C_{16:0}$ (21.7%), and $C_{18:1}{\omega}7c$ (12.5%). Based on 16S rRNA gene sequence similarity and DNA-DNA hybridization analyses, strain GNUM08120 was identified as a novel subspecies of Alteromonas macleodii, designated Alteromonas macleodii subsp. GNUM08120. Production of agarase by strain GNUM08120 was likely repressed by the effect of carbon catabolite repression caused by glucose. The crude agarase prepared from 12-h culture broth of strain GNUM08120 exhibited an optimum pH and temperature for agarase activity at 7.0 and $40^{\circ}C$, respectively. The crude enzyme produced (neo)agarobiose, (neo)agarotetraose, and (neo)agarohexaose as the hydrolyzed product of agarose.

Effects of Tho2, a component of THO complex, on growth and mRNA export in fission yeast (분열효모에서 THO 복합체의 구성요소인 Tho2가 생장 및 mRNA export에 미치는 영향)

  • Koh, Eun-Jin;Yoon, Jin Ho
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.181-185
    • /
    • 2015
  • Tho2/THOC2 is a subunit of the THO complex that plays important roles in mRNP biogenesis connecting transcription with mRNA maturation and export. A fission yeast, Schizosaccharomyces pombe, ortholog of Tho2/THOC2 was identified from the genome database. Tetrad analysis showed that the S. pombe tho2 is essential for growth. Repression or overexpression of the tho2 gene caused growth defect with elongated cells, abnormal DNA distribution, and accumulation of $poly(A)^+$ RNA in the nucleus. And the functional GFP-Tho2 protein is localized mainly in the nucleus. Yeast two-hybrid analysis showed that Tho2 interacted with Tex1, another subunit of THO complex. These results suggest that S. pombe Tho2 is also involved in mRNA export from the nucleus and is a component of THO complex.

NSM00158 Specifically Disrupts the CtBP2-p300 Interaction to Reverse CtBP2-Mediated Transrepression and Prevent the Occurrence of Nonunion

  • Chen, Xun;Zhang, Wentao;Zhang, Qian;Song, Tao;Yu, Zirui;Li, Zhong;Duan, Ning;Dang, Xiaoqian
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.517-529
    • /
    • 2020
  • Carboxyl-terminal binding proteins (CtBPs) are transcription regulators that control gene expression in multiple cellular processes. Our recent findings indicated that overexpression of CtBP2 caused the repression of multiple bone development and differentiation genes, resulting in atrophic nonunion. Therefore, disrupting the CtBP2-associated transcriptional complex with small molecules may be an effective strategy to prevent nonunion. In the present study, we developed an in vitro screening system in yeast cells to identify small molecules capable of disrupting the CtBP2-p300 interaction. Herein, we focus our studies on revealing the in vitro and in vivo effects of a small molecule NSM00158, which showed the strongest inhibition of the CtBP2-p300 interaction in vitro. Our results indicated that NSM00158 could specifically disrupt CtBP2 function and cause the disassociation of the CtBP2-p300-Runx2 complex. The impairment of this complex led to failed binding of Runx2 to its downstream targets, causing their upregulation. Using a mouse fracture model, we evaluated the in vivo effect of NSM00158 on preventing nonunion. Consistent with the in vitro results, the NSM00158 treatment resulted in the upregulation of Runx2 downstream targets. Importantly, we found that the administration of NSM00158 could prevent the occurrence of nonunion. Our results suggest that NSM00158 represents a new potential compound to prevent the occurrence of nonunion by disrupting CtBP2 function and impairing the assembly of the CtBP2-p300-Runx2 transcriptional complex.

The Role of MicroRNAs in Regulatory T Cells and in the Immune Response

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.11-41
    • /
    • 2011
  • The discovery of microRNA (miRNA) is one of the major scientific breakthroughs in recent years and has revolutionized current cell biology and medical science. miRNAs are small (19~25nt) noncoding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region (3'UTR) of specific messenger RNAs (mRNAs) for degradation of translation repression. Genetic ablation of the miRNA machinery, as well as loss or degradation of certain individual miRNAs, severely compromises immune development and response, and can lead to immune disorders. Several sophisticated regulatory mechanisms are used to maintain immune homeostasis. Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Recent publications have provided compelling evidence that miRNAs are highly expressed in Treg cells, that the expression of Foxp3 is controlled by miRNAs and that a range of miRNAs are involved in the regulation of immunity. A large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, cardiovascular disease and diabetes, as well as psychiatric and neurological diseases. Although it is still unclear how miRNA controls Treg cell development and function, recent studies certainly indicate that this topic will be the subject of further research. The specific circulating miRNA species may also be useful for the diagnosis, classification, prognosis of diseases and prediction of the therapeutic response. An explosive literature has focussed on the role of miRNA. In this review, I briefly summarize the current studies about the role of miRNAs in Treg cells and in the regulation of the innate and adaptive immune response. I also review the explosive current studies about clinical application of miRNA.

HSV-1 ICP27 represses NF-κB activity by regulating Daxx sumoylation

  • Kim, Ji Ae;Choi, Mi Sun;Min, Jung Sun;Kang, Inho;Oh, Jeongho;Kim, Jin Chul;Ahn, Jeong Keun
    • BMB Reports
    • /
    • v.50 no.5
    • /
    • pp.275-280
    • /
    • 2017
  • Herpes simplex virus type 1 ICP27 is a multifunctional protein responsible for viral replication, late gene expression, and reactivation from latency. ICP27 interacts with various cellular proteins, including Daxx. However, the role of interaction between ICP27 and Daxx is largely unknown. Since Daxx is known to repress $NF-{\kappa}B$ activity, there is a possibility that ICP27 may influence the inhibitory effect of Daxx on $NF-{\kappa}B$ activity. In this study, we tested whether ICP27 affects the $NF-{\kappa}B$ activity through its interaction with Daxx. Interestingly, ICP27 enhanced the Daxx-mediated repression of $NF-{\kappa}B$ activity. In addition, we found that sumoylation of Daxx regulates its interaction with p65. ICP27 binds to Daxx, inhibits Daxx sumoylation, and enhances p65 deacetylation induced by Daxx. Consequently, ICP27 represses the $NF-{\kappa}B$ activity, by elevating the inhibitory effect of Daxx on $NF-{\kappa}B$ activity through desumoylation of Daxx.

Identification of salt and drought inducible glutathione S-transferase genes of hybrid poplar

  • Kwon, Soon-Ho;Kwon, Hye-Kyoung;Kim, Wook;Noh, Eun Woon;Kwon, Mi;Choi, Young Im
    • Journal of Plant Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.26-32
    • /
    • 2014
  • Recent genome annotation revealed that Populus trichocarpa contains 81 glutathione S-transferase (GST) genes. GST genes play important and varying roles in plants, including conferring tolerance to various abiotic stresses. Little information is available on the relationship - if any - between drought/salt stresses and GSTs in woody plants. In this study, we screened the PatgGST genes in hybrid poplar (Populus alba ${\times}$ Populus tremula var. glandulosa) that were predicted to confer drought tolerance based on our expression analysis of all members of the poplar GST superfamily following exposure to salt (NaCl) and drought (PEG) stresses, respectively. Exposure to the salt stress resulted in the induction of eight PatgGST genes and down-regulation of one PatgGST gene, and the level of induction/repression was different in leaf and stem tissues. In contrast, 16 PatgGST genes were induced following exposure to the drought (PEG) stress, and two were down-regulated. Taken together, we identified seven PatgGSTs (PatgGSTU15, PatgGSTU18, PatgGSTU22, PatgGSTU27, PatgGSTU46, PatgGSTU51 and PatgGSTU52) as putative drought tolerance genes based on their induction by both salt and drought stresses.

Fission yeast Pci2 has function in mRNA export as a component of TREX-2 (분열효모 Pci2가 TREX-2 구성요소로서 mRNA 방출에 미치는 영향)

  • Park, Jin Hee;Yoon, Jin Ho
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.325-329
    • /
    • 2018
  • Thp1/PCID2, PCI domain-containing protein, is a component of the evolutionally conserved TREX-2 complex linking mRNA transcription and export. In fission yeast, Schizosaccharomyces pombe, the pci2 (SPBC1105.07c) gene encodes a PCI domain-containing protein that is predicted as a fission yeast orthologue of Thp1 (in budding yeast)/PCID2 (in human). Repression of pci2 expression inhibited both growth and mRNA export. And over-expression of pci2 also exhibited growth retardation with slight accumulation of $poly(A)^+$ RNA in the nucleus. Moreover, yeast two-hybrid and co-immunoprecipitation analysis showed that the Pci2 protein physically interacted with Sac3 and Dss1, which are members of TREX-2 complex. These observations support that the S. pombe Pci2 protein, as a component of TREX-2 complex, is implicated in mRNA export.

Regulatory Characterization of xylA Promoter Region in Escherichia coli (대장균의 xylA 프로모터 영역의 조절 특성)

  • Kang, Byung-Tae;Roh, Dong-Hyun;Joo, Gil-Jae;Rhee, In-Koo
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.443-448
    • /
    • 1996
  • In order to investigate the function of xylA promoter(Pxyl) as regulatory region Pxyl-lacZ fusion gene was constructed by the insertion of xylA promoter to the multiple cloning site of upstream of lacZ gene in a multicopy numbered plasmid pMC1403 containing promoterless lac operon, which was designated pMCX191, and Pxyl-lacZ fragment from pMCX191 was inserted to low copy numbered plasmid pLG339, designated pLGX191. The expressions of ${\beta}-galactosidase$ in these recombinant plasmids containing Pxyl-lacZ fusion gene were induced strongly by the addition of xylose, repressed by the addition of 0.2% glucose in the presence of xylose. The catabolite repressions were derepressed by the addition of 1 mM cAMP as same as native xylA gene. The fragment of xylA promoter was partially deleted from the upstream of xylA promoter by exonuclease III to investigate the regulation site of xylA promoter and the degrees of deletion derivatives of xylA promoter were analyzed by the DNA base sequencing. By the investigations of the induction by xylose, repression by glucose and derepression by cAMP on xylose isomerase production, the regulation site of xylA promoter may be located in segment between -165 and -59 bp upstream from the initiation site of xylA translation.

  • PDF

Molecular Characterization and Expression Analysis of Clathrin-Associated Adaptor Protein 3-δ Subunit 2 (AP3S2) in Chicken

  • Oh, Jae-Don;Bigirwa, Godfrey;Lee, Seokhyun;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.46 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • A chicken clathrin-associated adaptor protein $3-{\delta}$ subunit 2 (AP3S2) is a subunit of AP3, which is involved in cargo protein trafficking to target membrane with clathrin-coated vesicles. AP3S2 may play a role in virus entry into host cells through clathrin-dependent endocytosis. AP3S2 is also known to participate in metabolic disease developments of progressions, such as liver fibrosis with hepatitis C virus infection and type 2 diabetes mellitus. Chicken AP3S2 (chAP3S2) gene was originally identified as one of the differentially expressed genes (DEGs) in chicken kidney which was fed with different calcium doses. This study aims to characterize the molecular characteristics, gene expression patterns, and transcriptional regulation of chAP3S2 in response to the stimulation of Toll-like receptor 3 (TLR3) to understand the involvement of chAP3S2 in metabolic disease in chicken. As a result, the structure prediction of chAP3S2 gene revealed that the gene is highly conserved among AP3S2 orthologs from other species. Evolutionarily, it was suggested that chAP3S2 is relatively closely related to zebrafish, and fairly far from mammal AP3S2. The transcriptional profile revealed that chAP3S2 gene was highly expressed in chicken lung and spleen tissues, and under the stimulation of poly (I:C), the chAP3S2 expression was down-regulated in DF-1 cells (P<0.05). However, the presence of the transcriptional inhibitors, BAY 11-7085 (Bay) as an inhibitor for nuclear factor ${\kappa}B$ ($NF{\kappa}B$) or Tanshinone IIA (Tan-II) as an inhibitor for activated protein 1 (AP-1), did not affect the expressional level of chAP3S2, suggesting that these transcription factors might be dispensable for TLR3 mediated repression. These results suggest that chAP3S2 gene may play a significant role against viral infection and be involved in TLR3 signaling pathway. Further study about the transcriptional regulation of chAP3S2 in TLR3 pathways and the mechanism of chAP3S2 upon virus entry shall be needed.