DOI QR코드

DOI QR Code

Isolation and Characterization of a Novel Agar Degrading Bacterium, Alteromonas macleodii subsp. GNUM08120, from Red Macroalgae

홍조류로부터 신규 한천분해미생물 Alteromonas macleodii subsp. GNUM08120의 분리 및 동정

  • Chi, Won-Jae (Department of Biological Science, Myongji University) ;
  • Lim, Ju-Hyeon (Department of Biological Science, Myongji University) ;
  • Park, Da Yeon (Department of Biological Science, Myongji University) ;
  • Kim, Mu-Chan (Department of Marine Environmental Engineering, Gyeongsang National University) ;
  • Kim, Chang-Joon (Department of Chemical and Biological Engineering, Gyeongsang National University) ;
  • Chang, Yong-Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hong, Soon-Kwang (Department of Biological Science, Myongji University)
  • 지원재 (명지대학교 생명과학정보학부) ;
  • 임주현 (명지대학교 생명과학정보학부) ;
  • 박다연 (명지대학교 생명과학정보학부) ;
  • 김무찬 (경상대학교 생명화학공학과 및 공학연구원) ;
  • 김창준 (경상대학교 해양환경공학과 및 해양산업 연구소) ;
  • 장용근 (한국과학기술원 생명화학공학과) ;
  • 홍순광 (명지대학교 생명과학정보학부)
  • Received : 2012.08.01
  • Accepted : 2012.10.02
  • Published : 2013.03.28

Abstract

An agar-hydrolyzing marine bacterium, strain GNUM08120, was isolated from Sargassum fulvellum collected from Yeongil bay of East Sea of Korea. The isolate was Gram-negative, aerobic, motile with single polar flagellum, and grew at 1-10% NaCl, pH 5.0-8.0, and $15-37^{\circ}C$. G+C content and the predominant respiratory quinone were 46.13 mol% and Q-8, respectively. The major cellular fatty acids were Summed feature 3 (24.5%), $C_{16:0}$ (21.7%), and $C_{18:1}{\omega}7c$ (12.5%). Based on 16S rRNA gene sequence similarity and DNA-DNA hybridization analyses, strain GNUM08120 was identified as a novel subspecies of Alteromonas macleodii, designated Alteromonas macleodii subsp. GNUM08120. Production of agarase by strain GNUM08120 was likely repressed by the effect of carbon catabolite repression caused by glucose. The crude agarase prepared from 12-h culture broth of strain GNUM08120 exhibited an optimum pH and temperature for agarase activity at 7.0 and $40^{\circ}C$, respectively. The crude enzyme produced (neo)agarobiose, (neo)agarotetraose, and (neo)agarohexaose as the hydrolyzed product of agarose.

Keywords

References

  1. Angell, S., C. G. Lewis, M. J. Buttner, and M. J. Bibb. 1994. Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase. Mol. Gen. Genet. 244: 135-143.
  2. Ausubel, S. F., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1989. Current Protocols in Molecular Biology. New York: Wiley.
  3. Bajpai, P. 1997. Microbial xylanolytic enzyme system: properties and applications. Adv. Appl. Microbiol. 43: 141-194. https://doi.org/10.1016/S0065-2164(08)70225-9
  4. Baumann, L., P. Baumann, M. Mandel, and R. D. Allen. 1972. Taxomy of aerobic marine eubacteria. J. Bacteriol. 110: 402-429.
  5. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: a review. Appl. Micriobiol. Biotechnol. 56: 326-338. https://doi.org/10.1007/s002530100704
  6. Chi, W. J., D. Y. Park, S. C. Jeong, Y. K. Chang, and S. K. Hong. 2011. Isolation and characterization of starch-hydrolyzing Pseudoalteromonas sp. A-3 from the coastal sea water of Daecheon, Republic of Korea. Korean J. Microbiol. Biotech. 39: 317-323.
  7. Chi, W. J., Y. K. Chang, and S. K. Hong. 2012. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917-930. https://doi.org/10.1007/s00253-012-4023-2
  8. Chiu, H. H., W. Y. Shieh, S. Y. Lin, C. M. Tseng, P. W. Chiang, and I. Wagner-Dobler. 2007. Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanense estuary. Int. J. Syst. Evol. Microbiol. 57: 1209-1121. https://doi.org/10.1099/ijs.0.64762-0
  9. Chun, J. S., J. H. Lee, Y. Y. Jung, M. J. Kim, S. I. Kim, B. K. Kim, and Y. W. Lim. 2007. Extaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  10. Englard, S. and S. Seifter. 1990. Precipitation techniques. Methods Enzymol. 182: 285-300. https://doi.org/10.1016/0076-6879(90)82024-V
  11. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  12. Ivanova, E. P., J. P. Bowman, A. M. Lysenko, N. V. Zhukova, N. M. Gorshkova, A. F. Sergeev, and V. V. Mikhailov. 2005. Alteromonas addita sp. nov. Int. J. Syst. Evol. Microbiol. 55: 1065-1068. https://doi.org/10.1099/ijs.0.63521-0
  13. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge Univesity Press, UK.
  14. Kirimura K, N. Masuda, Y. Iwasaki, H. Nakagawa, R. Kobayashi, and S. Usai. 1999. Purification and characterization of a novel β-agarase from an alkalophilic bacterium, Altermonas sp. E-1. J. Biosci. Bioeng. 87: 436-441. https://doi.org/10.1016/S1389-1723(99)80091-7
  15. Kobayashi, R., M. Takisada, T. Suzuki, K. Kirimura, and S. Usami. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61: 162-163. https://doi.org/10.1271/bbb.61.162
  16. Komagata, K. and K. Suzuki. 1987. Lipid and cell-wall analysis in bacterial systematic. Methods Microbiol. 19: 161-207.
  17. Kwakman, J. H. and P. W. Postma. 1994. Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor. J. Bacteriol. 176: 2694-2698.
  18. Leon, O., L. Quintana, G. Peruzzzo, and J. C. Slebe. 1992. Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl. Environ. Microbiol. 58: 4060-4063.
  19. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  20. Martinez-Checa, F., W. Bejar, I. Llamas, A. del Moral, and E. Quesda. 2005. Alteromonas hispanica sp. nov., a polyunsaturated- fatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int. J. Syst. Evol. Microbiol. 55: 2385-2390. https://doi.org/10.1099/ijs.0.63809-0
  21. McCandless, E. 1981. Polysaccharides of the seaweeds. In: Lobban, C, and M. Wynne. (eds) The biology of seaweeds. University of California Press, Berkeley, pp. 559-588.
  22. Mesbah, M., U. Premachandran, and W. B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167. https://doi.org/10.1099/00207713-39-2-159
  23. Miller, L. and T. Berger. 1985. Bacterial identification by gas chromatography of whole cell fatty acid. Hewlett-Packard Application note. pp. 228-241.
  24. Miyazono, K., N. Tabei, S. Morita, Y. Ohnishi, S. Horinouchi, and M. Tanokura. 2012. Substrate recognition mechanism and substrate-dependent conformational changes of an ROK family glucokinase from Streptomyces griseus. J. Bacteriol. 194: 607-616. https://doi.org/10.1128/JB.06173-11
  25. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  26. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  27. Sasser, M. 1997. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI Inc.
  28. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  29. Temuuji, U., W. J. Chi, S. Y. Lee, Y. K. Chang, and S. K. Hong. 2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type $\beta$- agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. 92: 749-759. https://doi.org/10.1007/s00253-011-3347-7
  30. Van Trappen, S., T. L. Tan, J. Yang, J. Mergaert, and J. Swings. 2004. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int. J. Syst. Evol. Microbiol. 54: 1157-1163. https://doi.org/10.1099/ijs.0.02862-0
  31. Wang, J., H. Mou, X. Jiang, and H. Guan. 2006. Characterization of a novel beta-agarase from marine Altermonas sp. SY37-12 and its degrading products. Appl. Microbiol. Biotechnol. 71: 833-839. https://doi.org/10.1007/s00253-005-0207-3
  32. Yoon, J. H., I. G. Kim, K. H. Kang, T. K. Oh, and Y. H. Park. 2003. Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int. J. Syst. Evol. Microbiol. 53: 125-130. https://doi.org/10.1099/ijs.0.02234-0
  33. Yoon, J. H., S. H. Yeo, T. K. Oh, and Y. H. Park. 2004. Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 54: 1197-1201. https://doi.org/10.1099/ijs.0.63079-0

Cited by

  1. Isolation and Characterization of a Novel Agar-Degrading Marine Bacterium, Gayadomonas joobiniege gen, nov, sp. nov., from the Southern Sea, Korea vol.23, pp.11, 2013, https://doi.org/10.4014/jmb.1308.08007
  2. 해양성 Simiduia sp. SH-1 균주의 분리 및 한천분해효소의 특성조사 vol.25, pp.11, 2015, https://doi.org/10.5352/jls.2015.25.11.1273
  3. 신규 한천분해세균 Maribacter sp. SH-1의 분리 및 효소 특성조사 vol.44, pp.2, 2013, https://doi.org/10.4014/mbl.1511.11007
  4. Alteromonas sp. SH-1균 유래의 α-agarase의 특성조사 vol.31, pp.2, 2016, https://doi.org/10.7841/ksbbj.2016.31.2.113
  5. Bacterial biofilm development during experimental degradation of Melicertus kerathurus exoskeleton in seawater vol.4, pp.3, 2018, https://doi.org/10.3934/microbiol.2018.3.397
  6. 한천분해세균 Agarivorans sp. KC-1의 분리 및 내열성 β-아가라제의 특성 규명 vol.28, pp.9, 2018, https://doi.org/10.5352/jls.2018.28.9.1056
  7. Agarase를 생산하는 Persicobacter sp. DH-3의 분리 및 β-agarase의 특성 vol.29, pp.2, 2013, https://doi.org/10.5352/jls.2019.29.2.158