• 제목/요약/키워드: Gear mesh stiffness

검색결과 39건 처리시간 0.022초

기어이의 변동물림강성을 고려한 비틀림진동해석 (Torsional Vibration Analysis of a Spur Gear Pair with the Variable Mesh Stiffness)

  • 류재완;한동철;최상현
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.99-108
    • /
    • 1999
  • A four-degree-of-freedom non-linear model with time varying mesh stiffness has been developed for the dynamic analysis of spur gear trains. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover. In the model, developed several factors such as time varying mesh stiffness and damping, separation of teeth, teeth collision, various gear errors and profile modifications have been considered. Two computer programs are developed to calculate stiffness of a gear pair and transmission error and the dynamic analysis of modeled system using time integration method. Dynamic tooth and mesh forces, dynamic factors are calculated. Numerical examples have been given, which shows the time varying mesh stiffness ha a significant effect upon the dynamic tooth force and torsional vibrations.

  • PDF

변동물림강성/감쇠와 마찰을 고려한 기어구동계의 동특성 해석 (Dynamic Analysis of a Gear Driving System with Time-varying Mesh Stiffness/Damping and Friction)

  • 김우형;정태일;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.224-231
    • /
    • 2006
  • A six-degree-of-freedom dynamic model with time-varying mesh stiffness/damping and friction has been developed for the dynamic analysis of a gear driving system. This model includes a spur gear pair, bearing, friction and prime mover. Using Newton???s method, equations of motion for the gear driving system were derived. Two computer programs are developed to calculate mesh stiffness, transmission error and friction force and analyze the dynamics of the modeled system using a time integration method. The influences of mesh stiffness/damping, bearing, and friction affecting the system were investigated by performing eigenvalue analysis and time response analysis. It is found that the reduction of the maximum peak magnitude by friction is decided according to designing the positions of pitch point and maximum peak in the responses.

  • PDF

치형오차를 가진 헬리컬기어의 진동특성에 관한 연구 (A Study on the Vibration Characteristics of Helical Gears with Tooth Errors)

  • 박찬일;이장무
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1534-1542
    • /
    • 1996
  • Gear vibration is caused by the mesh stiffness, gear accuracy, and assembling errors. For these reasons, helical gear has the azial, radial, and rotational vibrations. In this study, the mesh stiffness is calculated by considering the tooth bending, contact, and foundation deformations. Rotational vibration of helical gear with tooth error is modeled by the nonlidear equation of motion with single degree of freedom and is anlyzed numerically. Also, by a specially designed experimental set-up, the analysis are cross-checked and the vibration characteristics of helical gear are discussed.

헬리컬 기어계의 동적 전달오차의 예측 (The Prediction of the Dynamic Transmission Error for the Helical Gear System)

  • 박찬일;조도현
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

무단 변속용 복합 유성기어의 동적 해석 (The Dynamic Analysis for Compound Planetary Gear of Continuously Variable Transmission)

  • 신영재;윤종학
    • 한국전산구조공학회논문집
    • /
    • 제14권3호
    • /
    • pp.329-337
    • /
    • 2001
  • 본 연구에서는 무단변속시에 사용되며, 세 개의 유성기어로 구성된 복합유성기어가 기어의 회진시 비선형적인 기어의 강성과 감쇠를 고려하여 모델링 되었고, 복합유성기어의 운동 방정식이 유도되었다. 소음과 진동의 원인인 선기어의 중심궤적이 구하여진 상태방정식에 4차 룬게-쿠타 수치해석 방법을 수행함으로써 구하였다.

  • PDF

굴삭기용 선회감속기의 베어링 특성이 기어 하중 분포에 미치는 영향 분석 (Effects of Bearing Characteristic on the Gear Load Distribution in the Slewing Reducer for Excavator)

  • 김정길;박영준;이근호;김재훈
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.8-14
    • /
    • 2014
  • A slewing reducer consists of two planetary gearsets which require a good load distribution over the gear tooth flank for enhanced durability. This work investigates how the bearing characteristics influence the load distribution over the gear tooth flank. A complete system model is developed to analyze a slewing reducer, including the non-linear mesh stiffness of the gears and the non-linear stiffness of bearings. The results indicate that the type, arrangement and preload of the output shaft bearings greatly influence the gear mesh misalignment, contact pattern, face load factor, gear safety factor and lifetimes of the parts.

머신러닝 앙상블을 사용한 항공기 동력 전달 체계의 물림 강성 예측 모델 (Mesh Stiffness Prediction Models for Aircraft Power Train Systems Using Machine Learning Ensemble )

  • 강연준;김연희;박정선
    • 항공우주시스템공학회지
    • /
    • 제18권5호
    • /
    • pp.1-14
    • /
    • 2024
  • 본 논문에서는 앙상블 기법을 통해 스퍼 기어의 설계 변수들을 입력 변수로 갖는 물림 강성 예측 모델을 제시하였다. 기존 연구들에서 제시된 계산 방식을 통해 개별 강성을 계산하고 총 물림 강성값의 최소 및 최대값을 도출하여 데이터셋을 생성하였다. 다변량 선형 회귀, 서포트 벡터 회귀, 의사결정 트리 회귀를 사용하여 물림 강성 최소 및 최대값을 예측하는 모델을 생성하였다. 스태킹 앙상블 기법을 사용하여 해당 예측 모델들을 기반 모델로 갖는 메타 모델을 생성하였다. 실제 항공기 엔진 시동기에 사용되는 기어의 제원을 통해 앙상블 메타 모델의 검증을 수행하였으며, 매우 높은 예측 성능을 보이는 것을 통해 실제 기어 시스템에 대한 적용 타당성 및 유효성을 확인하였다.

기어전동 회전축계의 진동해석 (Vibration Analysis of Geared Rotor System)

  • 김경득;김용한;양보석;이수종
    • 동력기계공학회지
    • /
    • 제4권1호
    • /
    • pp.60-67
    • /
    • 2000
  • As the speed of rotating machines increases and also their weight decreases, the coupling between lateral and torsional vibrations must be considered. In the past, rotordynamics and geardynamics have tended to treat the lateral and torsional vibrations of the system elements as separate and decoupled mechanisms. In the paper, the coupled lateral-torsional free and forced vibration of rotors trained by gears is analyzed using finite element method. Also the complicated variation of the meshing stiffness as a function of contact point along the line of action is estimated correctly. The gear mesh model is assumed to be linear with constant average mesh stiffness.

  • PDF

증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰 (A Detailed Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-Bearing system)

  • 이안성;하진웅;최동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.722-728
    • /
    • 2001
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element this paper intends to look into in detail the coupled lateral and torsional vibration characteristics in a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled analyses natural vibration frequencies and their mode shapes upon varying the gear mesh stiffness, and also by comparing the strain energies of lateral and torsional vibration modes. Results have shown that some modes may have coupled lateral and torsional mode characteristics as the gear mesh stiffness increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, i.e., the dominant mode changes from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

  • PDF

기어 물림부의 스프링강성 변화와 구동기의 불균형을 고려한 2단 기어장치의 진동에 관한 연구 (A Study on the Vibration of 2-Stage Gear System Considering the Change of Gear Meshing Stiffness and Imbalance of Motor)

  • 정태형;이정상;최정락
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.8-14
    • /
    • 2001
  • We develop a method to analyze dynamic behavior off multi-stage gear train system. The example system consists of three shafts supported by ball bearings at the ends of them and two pairs of spur gear set. For exact analysis, the meshing tooth pair of gear set is modeled as spring and damper having time-dependent meshing stiffness and damping. The bearing is modeled as spring. The result of this analysis is compared to that of other model having mean mesh stiffness. The effect of the excitation force by the unbalance off rotor off motor is also analyzed. Finally, the change ova natural frequency of the whole system due to the change of an angle between three shafts is compared in each case, and from this analysis, the avoiding angle for design is advised.

  • PDF