• 제목/요약/키워드: Gear manufacturing

검색결과 413건 처리시간 0.02초

동력분배용 중간변속기 개발에 관한 연구 (Development of the Transfer Case for Power Distribution)

  • 심기중;문홍주;이영춘
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.95-102
    • /
    • 2018
  • This paper presents the development of the transfer case for a 3.5-ton commercial vehicle. A transfer case is composed of many parts, including helical gear, shaft, bearing, planetary gear, and others. Helical gears are currently used as power transmitting gears due to their relatively smooth and silent operation, large load carrying capacity, and operation at higher speeds. The key parameter in transfer case development is the bending stress at the root of a tooth in the helical gear. The bending stress of the helical gear has been studied through theoretical calculation and finite element method (FEM) analysis. Major factors of the bending stress calculation are determined according to American Gear Manufacturers Association (AGMA) standards, and FEM model analysis of the helical gear is conducted. FEM results are compared with theoretical calculations and the difference of the bending stress is described.

플러그인 HEV용 변속기전달오차와 하중분포에 관한 연구 (Analytical Prediction of Transmission Error and Load Distribution for a Plugin HEV)

  • 장기;강재화;윤기백;류성기
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.116-121
    • /
    • 2012
  • In recent years, world is faced with a transportation energy dilemma, and the transportation is dependent on a single fuel - petroleum. However, Hybrid Electric Vehicle(HEV) technology holds more advantages to reduce the demand for petroleum in the transportation by efficiency improvements of petroleum consumption. Therefore, there is a trend that lower gear noise levels are demanded in HEV for drivers to avoid annoyance and fatigue during operation. And meshing transmission error(T.E.) is the excitation that leads to the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. This paper presents a method for the analysis of gear tooth profile and lead modification, and the predictions of transmission error and load distribution are shown under one loaded torque for the 1st gear pair of HEV gearbox. The test is also obtained before tooth micro-modification under the torque. At last, the appropriate tooth modification is used to minimize the transmission error and load distribution under the loaded torque. It is a good approach which the simulated result is used to improve the design in order to minimize the radiation gear whine noise.

헬리컬 코니칼 인볼류트기어의 3D 모델링과 치면 응력해석에 관한 연구 (A Study on 3D Modeling & Stress Analysis of Helical Conical Involute Gear)

  • 강재화;이도영;김준성;허철수;류성기
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.45-51
    • /
    • 2014
  • Generally, marine transmissions contain straight shafts and helical gears, meaning that enginerooms require more space. In order to guarantee a levelengine space for conical involute gears or beveloid gears, both of which are important machine parts, a conical gear was used to replace the traditional cylinder gear. Owing to weak points such as the point contact phenomenon of the teeth, a limitation of the width of each tooth in terms of the addendum, the variational modification coefficient,and the difficulty of processing, research about conical involute gears remains at a standstill. Along with the increasing number of applications of conical involute gears, research on conical gear design technology is necessary. In this paper, in an effort to enhance conical gear design technology, research on the 3D modeling and stress analyses of helical conical involute gears were done.

기어 챔퍼링 공정에서 공구의 절삭력 해석 (Analysis on Cutting Force of Tool in Gear Chamfering Process)

  • 최부림;황광복;배강열
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.52-62
    • /
    • 2013
  • In order to obtain the relation between the cutting force and the process parameters in the chamfering process for the gear of a gear shaft, analysis of the process was performed with a simplified model instead of considering the whole actual 3-dimensional cutting situation produced between cutting tool and gear. The model divided the actual situation into the accumulation of hundreds of 2-dimensional layers with a small thickness in the direction of the height of gear and derived cutting force at a cutting position by accumulating each cutting force calculated in a layer. With proposed method to analyze the cutting forces in the chamfering process, it was revealed that the cutting position and size were exactly searched to calculate the cutting force in each layer. The total cutting force was the highest in the corner where the cutter encountered the gear first during the relative motion between them. The cutting forces were changed in proportion to the cutting parameters such as feed rate and trajectory.

다물체 동역학 해석을 위한 기어 강성 모듈 개발 (Development of Gear Stiffness Module for Multi-Body Dynamic Analysis on Gears)

  • 송진섭;이근호;박영준;배대성;이철호
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.130-136
    • /
    • 2012
  • Dynamic as well as static and geometric design parameters such as inertia, tooth profile, backlash and clearance can be directly considered via multi-body dynamic analysis along with contact analysis. However, it is time consuming to use finite elements for the consideration of the tooth flexibility in the multi-body dynamic analysis of gears. A computationally efficient procedure, so called, Gear Stiffness Module, is suggested to resolve this calculation time issue. The characteristics of gear tooth compliance are discussed and rotational stiffness element concept for the Gear Stiffness Module is presented. Transmission error analyses for a spur gear system are carried out to validate the reliability and efficiency of the module. Compared with the finite element model, the Gear Stiffness Module yields considerably similar results and takes only 3% of calculation time.

기어설계시 윤활댐핑 효과 반영을 위한 윤활과 비윤활 상태에서의 소음특성에 관한 실험적 연구 (Noise Characteristics in Lubricated and Non-lubricated Gears to Assess the Lubrication Damping Effect in Gear Design)

  • 홍진표;윤상환;윤현규;김정태;안준태
    • 한국기계가공학회지
    • /
    • 제20권8호
    • /
    • pp.1-10
    • /
    • 2021
  • Gears, which rotate and transmit power by interlocking two cogwheels, were invented in BC. They have been used in various systems, including industrial machinery, transportation devices, and living facilities, through the industrial revolution. Regardless of how they are used, gears are a major source of noise and vibration. Many effective measures are being taken to reduce the radiation noise generated from gears, most commonly by lubrication. Lubrication in gear units reduces friction on interlocking gear surfaces, dampening radioactive noise. This can be very useful for quiet gear design if these lubricating damping effects can be reflected in the analytical phase for gear design. This study experimentally confirms the properties of lubricated and non-lubricated radioactive noise by designing a decelerator gearbox and analyzing the radioactive noise characteristics by torque, rotation, and the number of gears using computer analysis.

전동차용 헬리컬기어의 축 조립오차에 따른 굽힘강도의 영향 (Effect of Shaft Misalignment on Bending Strength of Helical Gear for Metro Vehicles)

  • 이동형;최돈범;강성웅;최하영
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.64-72
    • /
    • 2022
  • Gear designers need to select the proper tolerances for deviations in both the center distance and parallelism of axes because these deviations cause high stresses and lead to fatigue breakage of the teeth. In this study, a three-dimensional finite element analysis model was developed for a helical gear used in metro vehicles, and a bending stress analysis method for gear pairs was established according to the contact position change. Using this model, the effect of shaft misalignment due to the center distance and shaft parallelism deviations on the bending stress of the gear was analyzed. As a result, the magnitude of the bending stress changed nearly linearly with the change in the center distance deviation. The tooth contact of the helical gear is biased toward the end of the tooth width when the parallelism deviations of the shaft occur, and the tooth root bending stress increases.

사출 성형 플라스틱 단붙이 기어의 강도평가 (Strength Estimation of Injection Molded Plastic Stepped Spur Gear)

  • 정태형;문창기;하영욱
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.17-23
    • /
    • 2006
  • The strength estimation is carried out for injection molded plastic stepped gear. The stepped gear is considered as a plate model which is fixed by two edges and freed on the other sides. The stress of common normal gear is calculated by Lewis formula which can be derived quite simply from the equation fur the stress at the root of a cantilever beam. Stress ratio(step factor) between the common normal gear and stepped gear is proposed for the ratio of the bending stress of normal gear and that of stepped gear. This study proposes the step factor added in Dupont equation which is used for strength estimation of injection molded plastic stepped gear.

원통 기어로 구성된 다단 기어열의 기어비 분할법 개발 (New Methods to Split Overall Gear Ratio of the Cylindrical Multi-Stage Gear Train)

  • 배인호;정태형
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.45-51
    • /
    • 2002
  • The existing methods to split overall gear ratio of the cylindrical multi-stage gear train have their own limitations to be used in practical design and are also problematic to be implemented in a formalized algerian. This paper proposes two types of new methods to find gear ratios best approximating the overall gear ratio. The proposed methods are quite general to be applied to the gear train having any number of stages, and offer a considerably good result in a very short time. The first method uses the random search method and the second one is based on the simulated annealing algorithm. The proposed algorithms are expected to be very useful not only as an independent program to split overall gear ratio, but also as a desist sub-module for the integrated desist system of multi-stage gear drives.

로터리테이블용 롤러기어캠의 5-축 가공에 관한 연구 (A Study on 5-Axis Machining of Roller Gear Cam for Rotary Table)

  • 조현덕;박종배;신용범;이광수
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.127-134
    • /
    • 2017
  • A rotary table is a positioning device used in metalworking for the multiple axes of machine tools, and the utilization trend is increasing with machining efficiency. In the construction of a rotary table, the core technology is a power transfer unit that drives the table, typically a gear type and a roller gear cam type. As the rollers installed on the turret column have rolling movement on the contact surface of the roller gear cam, the roller gear cam type has the advantage of low wear, high load, and fast driving. Therefore, it is currently being replaced by a roller gear cam type. In this study, we researched a 5-axis machining method for the roller gear cam on a rotary table and a new method of applying double roller gear cam curve to reduce the noise and shock between the roller and the cam surface. We implemented the 5-axis machining process in this study using software to generate NC-code and machined the roller gear cams using a Mazak Integrex-200IV. We found that the roller gear cam and turret were able to identify mutual touch status and the noise from the operation of the roller gear cam was substantially reduced.