• Title/Summary/Keyword: Gear Failure

Search Result 111, Processing Time 0.023 seconds

Failure Analysis of Carburized Gears by Microstructural Observation (침탄처리된 기어의 미세 조직학적 손상 원인분석)

  • Chun, Hae Dong;Chang, Sung Ho;Kim, Kyung Wook;Kuk, Youn Ho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.4
    • /
    • pp.191-201
    • /
    • 2014
  • The gear was made of SNC815 case-carburized, quench hardened and tempered steel. The gears were failed far earlier than the expected service life used in the industrial site. Causes of the failed gear were analyzed by microstructure observation. By the SEM and micro structure examinations, the damaged surfaces had been weared and failed by fatigue. Through microscope observation on the damaged surface, it was found that the cause of failure was determined by external overloading and the initial stage of the damage was closely related to complex contact fatigue failure. The overload and contact fatigue contributed to the early failure cause.

A Study on the Reliability of Helical Gear System Using Renewal Theory (재생이론에 의한 헬리컬 기어장치의 신뢰성에 관한 연구)

  • 김하수;양성모
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.90-96
    • /
    • 1998
  • Helical gear system is widely used to transmit heavy duty power with harmonies and silences between parallel shafts. This paper predicts a life with Weibull distribution and estimates a reliability based on recycle principle of helical gear systems. 2-parameter Weibull distribution is generally adopted to estimate the mechanical life and the reliability of most gear systems, because this Weibull distribution is proper to explain a characteristics or a life of parts of gear systems with linearity of probability density data on weibull data sheet. For a high reliability, this paper estimates a number of overhaul times and a number of needed substitutes (exchange attachment,1 or parts) with following renewal theory, One is make an exchange of whole module include failure attachments/parts and second estimating method is only exchange of a failure attachments / parts.

  • PDF

An Evaluation of Bending Fatigue Strength for Cold Forged Bevel Gear (냉간단조 베벨기어의 굽힘피로강도 평가)

  • 김재훈;사정우;김덕회;이상연
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2000
  • Gears are the most commonly used parts in automotive and industrial applications. One of most common modes of gear failures is tooth breakage, which is usually produced by the bending fatigue failure. It is important to manufacture the gears which can withstand the applied stresses in view of safety and economic requirement. This paper deals with bending fatigue strength for cold forged bevel gear. Especially, to compare fatigue characteristics for manufacturing processes difference, bending fatigue tests of bevel gears made by three different processes respectively. Results indicate that the fatigue strength of bevel gear is improved by cold forging process. Intergranular fracture is found on fatigue fracture surface, and dimples are observed on final fracture surface. The fatigue failure cannot be considered as a deterministic quantity, but must be characterized statistically. This study proposes a method to estimate bending fatigue lift of the bevel gear using the probability-load-life and Weibull analysis.

  • PDF

Design Development Test of Crashworthiness Device for Landing Gear (착륙장치 내추락 장치 설계개발시험)

  • Shin, Jeong-Woo;Kim, Tae-Uk;Hwang, In-Hee;Jo, Jeong-Jun;Lee, Jeong-Sun;Park, Chong-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.111-116
    • /
    • 2010
  • To improve occupants' safety in an emergency, crashworthy design is necessary to rotorcraft design and development. Especially, landing gear has the important role for crashworthy design because landing gear absorbs relatively large energy for the crash landing. In addition, military specifications require failure of landing gear shall not increase danger to any occupants by penetration of the airframe. To meet the specification requirements, crashworthiness device like failure mechanism should be prepared so that landing gear is collapsed safely and doesn't penetrate the airframe. In this study, design and design development test of the failure mechanism which is necessary for the rotorcraft landing gear was performed. First, collapse scenario was determined for the landing gear not to penetrate the airframe. Then, the failure pin which is the most important part of the failure mechanism was designed with 2 strength range in order to meet design criteria. Finally, design of the failure mechanism was verified successfully by design development test.

RELIABILITY TEST DESIGN Of REMANUFACTURED STEERING GEAR OIL SEAL

  • Gafurov, Alisher;Jung, Do-Hyun;Song, Hyun-Seok
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.265-270
    • /
    • 2011
  • This paper describes a reliability/durability test of the remanufactured steering gear units. There used to be government restrictions to remanufacture certain types of automotive components regarding safety of passengers. Nevertheless, scientific approach to sustainability and remanufacturing process provided solid evidence of highly beneficial sides of reusing the products. Failure mode analysis of the steering gear unit is performed and main failure is found out. The unit is remanufactured by fixing the failure and its quality is assessed through designing a new sequence of loading events. Oil leakage is witnessed as a possible failure and its volume is measured. Conclusions based on laboratory condition durability test are given at the end.

  • PDF

Development of AI-Based Condition Monitoring System for Failure Diagnosis of Excavator's Travel Device (굴착기 주행디바이스의 고장 진단을 위한 AI기반 상태 모니터링 시스템 개발)

  • Baek, Hee Seung;Shin, Jong Ho;Kim, Seong Joon
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2021
  • There is an increasing interest in condition-based maintenance for the prevention of economic loss due to failure. Moreover, immense research is being carried out in related technologies in the field of construction machinery. In particular, data-based failure diagnosis methods that employ AI (machine & deep learning) algorithms are in the spotlight. In this study, we have focused on the failure diagnosis and mode classification of reduction gear of excavator's travel device by using the AI algorithm. In addition, a remote monitoring system has been developed that can monitor the status of the reduction gear by using the developed diagnosis algorithm. The failure diagnosis algorithm was performed in the process of data acquisition of normal and abnormal under various operating conditions, data processing and analysis by the wavelet transformation, and learning. The developed algorithm was verified based on three-evaluation conditions. Finally, we have built a system that can check the status of the reduction gear of travel devices on the web using the Edge platform, which is embedded with the failure diagnosis algorithm and cloud.

Fault Diagnosis in Gear Using Adaptive Signal Processing (능동 신호 처리 이용한 기어의 이상 진단)

  • Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1114-1118
    • /
    • 2000
  • Impulsive sound and vibration signals in gear are often associated with their faults. Thus these impulsive sound and vibration signals can be used as indicators in the diagnosis of gear fault. The early detection of impulsive signal due to gear fault prevents from complete failure in gear. However it is often difficult to make objective measurement of impulsive signals because of background noise signals. In order to ease the detection of impulsive signals embedded in background noise, we enhance the impulsive signals using adaptive signal processing.

  • PDF

Reliability Evaluation of Multi-Stage Gear Drive (다단 기어장치의 신뢰성 평가에 관한 연구)

  • Chong Tae-Hyong;Kim Young-Ju;Park Seung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.16-23
    • /
    • 2006
  • Recently the design of multi-stage gear drive is being highly concerned. Until now, since the researches of gear drive are focused on the design for satisfying safety factor, the reliability evaluation of multi-stage gear drive is not included. In this paper, the life and reliability models of multi-stage gear drive are proposed using methods of probability and statistics. The life and reliability of the multi-stage gear drive have been evaluated, which is based on the life and reliability of each stage gear drive. The pinion and gear lives of each stage are calculated using the Lundberg-Palmgren theory and the Weibull failure distribution. These lives are combined using methods of probability and statistics to produce a life and reliability model of multi-stage gear drive.

Failure Analysis of Cold Extrusion Die for the Helical Gear (헬리컬기어 냉간압출금형의 파손해석)

  • 권혁홍
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.79-88
    • /
    • 2001
  • This paper suggests to predict the failure of helical gear extrusion die. The basic assumption that constitutes the frame-work for any combined stress failure theory is that failure is predicted to occur when the maximum value of stress becomes equal to or exceeds the value of the same modulus that produces failure in a simple uniaxial stress test using the same material. The stresses which were calculated to each critical points are applied maximum normal stress theory and distor-tion energy theory. The theroretical analysis and experimental results for Samanta process and New process dies were com-pared.

  • PDF

Failure Examples Study for Tribological Characteristics of Drive Shaft and Axle System in Vehicles (자동차 드라이브 샤프트와 액슬 시스템의 트라이볼로지적인 특성에 관한 고장사례 고찰)

  • Lee, Il Kwon;Moon, Hak Hoon;Youm, Kwang Wook
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.397-402
    • /
    • 2013
  • This study examined the tribological characteristics of the drive shaft and axle system in vehicles. The first drive shaft example contained end play for a CV joint that transferred part of the transmission power to the wheel. The joint part of the drive shaft was deformed because of reduced durability due to wear. Thus, vibrations caused the body to shake and become unbalanced when the drive shaft transferred the power. The second example was the cross-section of a shaft that connected the slip-connection of the propeller shaft on the input side to the yoke flange of the output side; the durability was reduced because of corrosion. End play caused by wear between the bearing and cross-section shaft appeared to cause shaking. In the third example, a grease leak reduced lubrication and thus caused damage to the hub bearing and inside the knuckle. The failure was produced by sticking. The fourth example had noise produced by the gear and gear transfer. This was due to the backlash of the pinion and few ring gears for the differential gear. Therefore, drive shaft and axle systems must be thoroughly checked and managed to minimize and reduce failure phenomena.