• Title/Summary/Keyword: GeSbTe film

Search Result 60, Processing Time 0.03 seconds

The Study of Phase-change with Temperature and Electric field in Chalcogenide Thin Film

  • Yang, Sung-Jun;Shin, Kyung;Park, Jung-Il;Lee, Ki-Nam;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.24-27
    • /
    • 2003
  • We have been investigated phase-change with temperature and electric field in chalcogenide Ge$_2$Sb$_2$Te$\sub$5/ thin film. T$\sub$c/(crystallization temperature) is confirmed by measuring the resistance with the varying temperature on the hotplate. We have measured I-V characteristics with Ge$_2$Sb$_2$Te$\sub$5/ chalcogenide thin film. It is compared with I-V characteristics after impress the variable pulse. The pulse has variable height and duration.

Evaluation of Multi-Level Memory Characteristics in Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 Cell Structure (Ge2Sb2Te5/TiN/W-Doped Ge2Sb2Te5 셀 구조의 다중준위 메모리 특성 평가 )

  • Jun-Hyeok Jo;Jun-Young Seo;Ju-Hee Lee;Ju-Yeong Park;Hyun-Yong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.88-93
    • /
    • 2024
  • To evaluate the possibility as a multi-level memory medium for the Ge2Sb2Te5/TiN/W-doped Ge2Sb2Te5 cell structure, the crystallization rate and stabilization characteristics according to voltage (V)- and current (I)- pulse sweeping were investigated. In the cell structures prepared by a magnetron sputtering system on a p-type Si (100) substrate, the Ge2Sb2Te5 and W-doped Ge2Sb2Te5 thin films were separated by a barrier metal, TiN, and the individual thicknesses were varied, but the total thickness was fixed at 200 nm. All cell structures exhibited relatively stable multi-level states of high-middle-low resistance (HR-MR-LR), which guarantee the reliability of the multilevel phase-change random access memory (PRAM). The amorphousto-multilevel crystallization rate was evaluated from a graph of resistance (R) vs. pulse duration (T) obtained by the nanoscaled pulse sweeping at a fixed applied voltage (12 V). For all structures, the phase-change rates of HR→MR and MR→LR were estimated to be approximately t<20 ns and t<40 ns, respectively, and the states were relatively stable. We believe that the doublestack structure of an appropriate Ge-Sb-Te film separated by barrier metal (TiN) can be optimized for high-speed and stable multilevel PRAM.

Phase-Change Properties of annealed $Ge_1Se_1Te_2$ thin film with Sb doping for Application of Phase-Change Random Access Memory (상변화 메모리 응용을 위한 Sb을 첨가한 $Ge_1Se_1Te_2$ 박막의 열처리 후 상변화 특성)

  • Kim, Hyun-Koo;Choi, Hyuck;Nam, Ki-Hyeon;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.106-107
    • /
    • 2007
  • A detailed investigation of cell structure and electrical characteristic in chalcogenide-based phase-change random access memory(PRAM) devices is presented. We used compound of Ge-Se-Te material for phase-change cell. Actually, the performance properties have been improved surprisingly then conventional Ge-Sb-Te. However, crystallization time was as long as ever for amorphization time. We conducted this experiment in order to solve that problem by doping-Sb with annealing.

  • PDF

Electrical Characteristics of and Temperature Distribution in Chalcogenide Phase Change Memory Devices Having a Self-Aligned Structure (자기정렬구조를 갖는 칼코겐화물 상변화 메모리 소자의 전기적 특성 및 온도 분포)

  • Yoon, Hye Ryeon;Park, Young Sam;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.448-453
    • /
    • 2019
  • This work reports the electrical characteristics of and temperature distribution in chalcogenide phase change memory (PCM) devices that have a self-aligned structure. GST (Ge-Sb-Te) chalcogenide alloy films were formed in a self-aligned manner by interdiffusion between sputter-deposited Ge and $Sb_2Te_3$ films during thermal annealing. A transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDS) analysis demonstrated that the local composition of the GST alloy differed significantly and that a $Ge_2Sb_2Te_5$ intermediate layer was formed near the $Ge/Sb_2Te_3$ interface. The programming current and threshold switching voltage of the PCM device were much smaller than those of a control device; this implies that a phase transition occurred only in the $Ge_2Sb_2Te_5$ intermediate layer and not in the entire thickness of the GST alloy. It was confirmed by computer simulation, that the localized phase transition and heat loss suppression of the GST alloy promoted a temperature rise in the PCM device.

Optcal and thermal diffusion properties of Ge-Sb-Te multi-layered thin films for optical recording media (광기록매체용 Ge-Sb-Te 다층 박막의 광학적 특성 및 열전달 특성)

  • 김도형;김상준;김상열;안성혁
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.5
    • /
    • pp.394-400
    • /
    • 2001
  • We studied thermal diffusion properties diffusion properties of multi-layered Ge-Sb-Te alloy thin films for optical recording media by solving the thermal equation. Based on the numerical analysis of optical energy distribution and absorption inside multi-layered films including temperature gradient and heat transfer simultaneously, we proposed the optimum parameters of the input laser power and the multi-layer structure as follow. i) Input laser power is 18 mW, ii) laser exposure time is 60 ns, iii) the thicknesses of the lower and the upper ZnS-SiO$_2$are 140 nm and 20~30 nm respectively, and iv) thickness of Ge-Sb-Te recording film is 20 nm.

  • PDF

A Study on Characteristics of Phase Change in Chalcogenide Multilayered Thin Film (칼코게나이드 다층박막의 상변화 특성에 관한 연구)

  • Choi, Hyuk;Kim, Hyun-Gu;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1426-1427
    • /
    • 2006
  • Chalcogenide based phase-change memory has a high capability and potential for the next generation nonvolatile memory device. Fast writing speed, low writing voltage, high sensing margin, low power consume and long cycle of read/write repeatability are also good advantages of nonvolatile phase-change memory. We have been investigated the new material for the phase-change memory. Its composition is consists of chalcogenide $Ge_{1}Se_{1}Te_2$ material. We made this new material to solve problems of conventional phase-change memory which has disadvantage of high power consume and high writing voltage. In the present work, we are manufactured $Ge_{1}Se_{1}Te_{2}/Ge_{2}Sb_{2}Te_{5}/Ge_{1}Se_{1}Te_{2}$ and $Ge_{2}Sb_{2}Te_{5}/Ge_{1}Se_{1}Te_{2}/Ge_{2}Sb_{2}Te_{5}$ sandwich triple layer structure devices are manufactured to investigate its electrical properties. Through the present work, we are willing to ensure a potential of substitutional method to overcome a crystallization problem on PRAM device.

  • PDF

Influence of Sn/Bi doping on the phase change characteristics of $Ge_2Sb_2Te_5$

  • Park T.J.;Kang M.J.;Choi S.Y.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.93-98
    • /
    • 2005
  • Rewritable optical disk is one of the essential data storage media in these days, which takes advantage of the different optical properties in the amorphous and crystalline states of phase change materials. As well known, data transfer rate is one of the most important parameter of the phase change optical disks, which is mostly limited by the crystallization speed of recording media. Therefore, we doped Sn/Bi to $Ge_2Sb_2Te_5$ alloy in order to improve the crystallization speed and investigated the dependence of phase change characteristics on Sn/Bi doping concentration. The Sn/Bi doped $Ge_2Sb_2Te_5$ thin film was deposited by RF magnetron co-sputtering system and phase change characteristics were investigated by X-ray diffraction (XRD), static tester, UV-visible spectrophotometer, electron probe microanalysis (EPMA), inductively coupled plasma mass spectrometer (ICP-MS) and atomic force microscopy (AFM). Optimum doping concentration of Bi and Sn were 5${\~}$6 at.$\%$ and the minimum time for crystallization was below than 20 ns. This improvement is correlated with the simple crystalline structure of Sn/Bi doped $Ge_2Sb_2Te_5$ and the reduced activation barrier arising from Sn/Bi doping. The results indicate that Sn/Bi might play an important role in the transformation kinetics of phase change materials..

  • PDF

The study of phase-change according to temperature and voltage in chalcogenide thin film (칼코게나이드 박막의 온도, 전압에 따른 상변화에 관한 연구)

  • Yang, Sung-Jun;Shin, Kyung;Park, Jung-Il;Nam, Lee-Ki;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.416-419
    • /
    • 2003
  • There is a growing need for a nonvolatile memory technology with faster speed than existing nonvolatile memories. We studied of phase-change according to temperature and voltage in chalcogenide thin film base on $Ge_2Sb_2Te_5$. Searching for Tg(Glass transition temperature) temperature controlled on hotplate with RT quenching. We measure I-V characteristic through out bottom electrode(ITO) and top electrode(Al) between $Ge_2Sb_2Te_5$. And compared with I-V characteristics after impress the variable stress.

  • PDF

Phase transition characteristics of As-doped $Ge_1Se_1Te_2$ film (As을 첨가한 $Ge_1Se_1Te_2$ 박막의 상변화 특성연구)

  • Kim, Jae-Hoon;Kim, Hyun-Goo;Chung, Hong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1287-1288
    • /
    • 2008
  • In the past work, we showed that $Ge_1Se_1Te_2$ thin films provide a promising alternative for PRAM applications to overcome the problems of conventional $Ge_2Sb_2Te_5$ PRAM devices. However, $Ge_1Se_1Te_2$ thin films were unstable at SET and RESET process. Because of unstable state and its melting temperature, we alloyed As for 5wt%, 10wt% and 15wt% respectively. The phase transition temperature of $Ge_1Se_1Te_2$-only thin film is found to be 213$^{\circ}C$ while As 10wt% alloyed $Ge_1Se_1Te_2$ showed phase transition at 242$^{\circ}C$ with more stability.

  • PDF