• Title/Summary/Keyword: Gaussian Map

Search Result 136, Processing Time 0.017 seconds

Precise Vehicle Localization Using Gaussian Mixture Map Based on Road Marking

  • Kim, Kyu-Won;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.23-31
    • /
    • 2020
  • It is essential to estimate the vehicle localization for an autonomous safety driving. In particular, since LIDAR provides precise scan data, many studies carried out to estimate the vehicle localization using LIDAR and pre-generated map. The road marking always exists on the road because of provides driving information. Therefore, it is often used for map information. In this paper, we propose to generate the Gaussian mixture map based on road-marking information and localization method using this map. Generally, the probability distributions map stores the single Gaussian distribution for each grid. However, single resolution probability distributions map cannot express complex shapes when grid resolution is large. In addition, when grid resolution is small, map size is bigger and process time is longer. Therefore, it is difficult to apply the road marking. On the other hand, Gaussian mixture distribution can effectively express the road marking by several probability distributions. In this paper, we generate Gaussian mixture map and perform vehicle localization using Gaussian mixture map. Localization performance is analyzed through the experimental result.

L1-norm Regularization for State Vector Adaptation of Subspace Gaussian Mixture Model (L1-norm regularization을 통한 SGMM의 state vector 적응)

  • Goo, Jahyun;Kim, Younggwan;Kim, Hoirin
    • Phonetics and Speech Sciences
    • /
    • v.7 no.3
    • /
    • pp.131-138
    • /
    • 2015
  • In this paper, we propose L1-norm regularization for state vector adaptation of subspace Gaussian mixture model (SGMM). When you design a speaker adaptation system with GMM-HMM acoustic model, MAP is the most typical technique to be considered. However, in MAP adaptation procedure, large number of parameters should be updated simultaneously. We can adopt sparse adaptation such as L1-norm regularization or sparse MAP to cope with that, but the performance of sparse adaptation is not good as MAP adaptation. However, SGMM does not suffer a lot from sparse adaptation as GMM-HMM because each Gaussian mean vector in SGMM is defined as a weighted sum of basis vectors, which is much robust to the fluctuation of parameters. Since there are only a few adaptation techniques appropriate for SGMM, our proposed method could be powerful especially when the number of adaptation data is limited. Experimental results show that error reduction rate of the proposed method is better than the result of MAP adaptation of SGMM, even with small adaptation data.

Gaussian process approach for dose mapping in radiation fields

  • Khuwaileh, Bassam A.;Metwally, Walid A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1807-1816
    • /
    • 2020
  • In this work, a Gaussian Process (Kriging) approach is proposed to provide efficient dose mapping for complex radiation fields using limited number of responses. Given a few response measurements (or simulation data points), the proposed approach can help the analyst in completing a map of the radiation dose field with a 95% confidence interval, efficiently. Two case studies are used to validate the proposed approach. The First case study is based on experimental dose measurements to build the dose map in a radiation field induced by a D-D neutron generator. The second, is a simulation case study where the proposed approach is used to mimic Monte Carlo dose predictions in the radiation field using a limited number of MCNP simulations. Given the low computational cost of constructing Gaussian Process (GP) models, results indicate that the GP model can reasonably map the dose in the radiation field given a limited number of data measurements. Both case studies are performed on the nuclear engineering radiation laboratories at the University of Sharjah.

Wavelet-based Digital Watermarking with Chaotic Sequences (카오스 시퀀스를 이용한 웨이브릿-기반 디지털 워터마크)

  • 김유신;김민철;원치선;이재진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.99-104
    • /
    • 2000
  • In this paper, as a digital watermark we propose to use a chaotic sequence instead of the conventional Gaussian sequence. It is relatively easy to generate the chaotic sequence and is very sensitive to the change of initial value. The chaotic sequence adopted in this paper is a modified version of logistic map to give the sequence distribution of Chebyshev map. In the experiments, we applied the Gaussian sequence and chaotic sequence to wavelet coefficients of images to compare the similarity distribution. The results show that, as id the DCT-based watermarking system, the chaotic sequence is robust for various signal processing attacks, Moreover, the similarity variance is smaller than the Gaussian sequence for iterative experiments. It also shows a better performance for compression errors than the Gaussian sequence.

  • PDF

Improved Rate of Convergence in Kohonen Network using Dynamic Gaussian Function (동적 가우시안 함수를 이용한 Kohonen 네트워크 수렴속도 개선)

  • Kil, Min-Wook;Lee, Geuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.204-210
    • /
    • 2002
  • The self-organizing feature map of Kohonen has disadvantage that needs too much input patterns in order to converge into the equilibrium state when it trains. In this paper we proposed the method of improving the convergence speed and rate of self-organizing feature map converting the interaction set into Dynamic Gaussian function. The proposed method Provides us with dynamic Properties that the deviation and width of Gaussian function used as an interaction function are narrowed in proportion to learning times and learning rates that varies according to topological position from the winner neuron. In this Paper. we proposed the method of improving the convergence rate and the degree of self-organizing feature map.

  • PDF

Co-registration of PET-CT Brain Images using a Gaussian Weighted Distance Map (가우시안 가중치 거리지도를 이용한 PET-CT 뇌 영상정합)

  • Lee, Ho;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.612-624
    • /
    • 2005
  • In this paper, we propose a surface-based registration using a gaussian weighted distance map for PET-CT brain image fusion. Our method is composed of three main steps: the extraction of feature points, the generation of gaussian weighted distance map, and the measure of similarities based on weight. First, we segment head using the inverse region growing and remove noise segmented with head using region growing-based labeling in PET and CT images, respectively. And then, we extract the feature points of the head using sharpening filter. Second, a gaussian weighted distance map is generated from the feature points in CT images. Thus it leads feature points to robustly converge on the optimal location in a large geometrical displacement. Third, weight-based cross-correlation searches for the optimal location using a gaussian weighted distance map of CT images corresponding to the feature points extracted from PET images. In our experiment, we generate software phantom dataset for evaluating accuracy and robustness of our method, and use clinical dataset for computation time and visual inspection. The accuracy test is performed by evaluating root-mean-square-error using arbitrary transformed software phantom dataset. The robustness test is evaluated whether weight-based cross-correlation achieves maximum at optimal location in software phantom dataset with a large geometrical displacement and noise. Experimental results showed that our method gives more accuracy and robust convergence than the conventional surface-based registration.

Markov Model-based Static Obstacle Map Estimation for Perception of Automated Driving (자율주행 인지를 위한 마코브 모델 기반의 정지 장애물 추정 연구)

  • Yoon, Jeongsik;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.29-34
    • /
    • 2019
  • This paper presents a new method for construction of a static obstacle map. A static obstacle is important since it is utilized to path planning and decision. Several established approaches generate static obstacle map by grid method and counting algorithm. However, these approaches are occasionally ineffective since the density of LiDAR layer is low. Our approach solved this problem by applying probability theory. First, we converted all LiDAR point to Gaussian distribution to considers an uncertainty of LiDAR point. This Gaussian distribution represents likelihood of obstacle. Second, we modeled dynamic transition of a static obstacle map by adopting the Hidden Markov Model. Due to the dynamic characteristics of the vehicle in relation to the conditions of the next stage only, a more accurate map of the obstacles can be obtained using the Hidden Markov Model. Experimental data obtained from test driving demonstrates that our approach is suitable for mapping static obstacles. In addition, this result shows that our algorithm has an advantage in estimating not only static obstacles but also dynamic characteristics of moving target such as driving vehicles.

IMAGE DENOISING BASED ON MIXTURE DISTRIBUTIONS IN WAVELET DOMAIN

  • Bae, Byoung-Suk;Lee, Jong-In;Kang, Moon-Gi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.246-249
    • /
    • 2009
  • Due to the additive white Gaussian noise (AWGN), images are often corrupted. In recent days, Bayesian estimation techniques to recover noisy images in the wavelet domain have been studied. The probability density function (PDF) of an image in wavelet domain can be described using highly-sharp head and long-tailed shapes. If a priori probability density function having the above properties would be applied well adaptively, better results could be obtained. There were some frequently proposed PDFs such as Gaussian, Laplace distributions, and so on. These functions model the wavelet coefficients satisfactorily and have its own of characteristics. In this paper, mixture distributions of Gaussian and Laplace distribution are proposed, which attempt to corporate these distributions' merits. Such mixture model will be used to remove the noise in images by adopting Maximum a Posteriori (MAP) estimation method. With respect to visual quality, numerical performance and computational complexity, the proposed technique gained better results.

  • PDF

Subsidiary Maximum Likelihood Iterative Decoding Based on Extrinsic Information

  • Yang, Fengfan;Le-Ngoc, Tho
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • This paper proposes a multimodal generalized Gaussian distribution (MGGD) to effectively model the varying statistical properties of the extrinsic information. A subsidiary maximum likelihood decoding (MLD) algorithm is subsequently developed to dynamically select the most suitable MGGD parameters to be used in the component maximum a posteriori (MAP) decoders at each decoding iteration to derive the more reliable metrics performance enhancement. Simulation results show that, for a wide range of block lengths, the proposed approach can enhance the overall turbo decoding performance for both parallel and serially concatenated codes in additive white Gaussian noise (AWGN), Rician, and Rayleigh fading channels.

Blind Image Quality Assessment on Gaussian Blur Images

  • Wang, Liping;Wang, Chengyou;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.448-463
    • /
    • 2017
  • Multimedia is a ubiquitous and indispensable part of our daily life and learning such as audio, image, and video. Objective and subjective quality evaluations play an important role in various multimedia applications. Blind image quality assessment (BIQA) is used to indicate the perceptual quality of a distorted image, while its reference image is not considered and used. Blur is one of the common image distortions. In this paper, we propose a novel BIQA index for Gaussian blur distortion based on the fact that images with different blur degree will have different changes through the same blur. We describe this discrimination from three aspects: color, edge, and structure. For color, we adopt color histogram; for edge, we use edge intensity map, and saliency map is used as the weighting function to be consistent with human visual system (HVS); for structure, we use structure tensor and structural similarity (SSIM) index. Numerous experiments based on four benchmark databases show that our proposed index is highly consistent with the subjective quality assessment.