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ABSTRACT 
 
Due to the additive white Gaussian noise (AWGN), images 
are often corrupted. In recent days, Bayesian estimation 
techniques to recover noisy images in the wavelet domain 
have been studied. The probability density function (PDF) 
of an image in wavelet domain can be described using 
highly-sharp head and long-tailed shapes. If a priori 
probability density function having the above properties 
would be applied well adaptively, better results could be 
obtained. There were some frequently proposed PDFs such 
as Gaussian, Laplace distributions, and so on. These func-
tions model the wavelet coefficients satisfactorily and have 
its own of characteristics. In this paper, mixture distribu-
tions of Gaussian and Laplace distribution are proposed, 
which attempt to corporate these distributions’ merits. Such 
mixture model will be used to remove the noise in images 
by adopting Maximum a Posteriori (MAP) estimation me-
thod. With respect to visual quality, numerical performance 
and computational complexity, the proposed technique 
gained better results. 
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denoising, MAP 
 

1. INTRODUCTION 
 
According to the intended purposes and environments, 
two-dimensional signals can be acquired and transmitted 
through various kinds of equipments. Simultaneously un-
wanted signals often contaminate original information. 
Such polluting data are called as noise, and recently noise 
removal (denoising) techniques have been a major research 
area in image processing.  

Recently digital image processing methods in trans-
form domain are studied actively. Especially, the wavelet 
transforms are very attractive techniques in many fields. It 
is attributed to the wavelet transform’s good property, that 
is, smart compression characteristics and clustering nature, 
which enables the wavelet transform to be useful in noise 
removal. 

Because of these characteristics of wavelet, Bayesian 
estimation has shown good results. It is empirically known 
that the PDF of wavelet coefficient has a high-peak at ori-
gin and long-tail. It has been modeled as various forms, 
such as Gaussian, Laplace, Generalized Gaussian (GG) 
distributions, and so on. For example, estimator using Lap-
lace distribution is identical to classic soft-threshold [1]. In 

[2], transformed signals were represented as GG distribu-
tions. However, there were some increased complexities 
due to additional calculations for estimating function 
parameters. In contrast to this, linear minimum mean 
square error (LLMMSE) estimator showed low complexity, 
however, satisfactory smoothing results [3]. 

The utilization of mixture model has been proposed to 
capture the characteristics of noise-free coefficients [4][5]. 
In [4], the application of Gaussian mixture model and hid-
den Markov model (HMM) were brought forward. Laplace 
mixture model also reported good denoising results [5]. 
That is to say, Laplace distributions can represent the 
coefficient’s property of sharp-head and long-tail, and 
Gaussian also well captures the clustering characteristics of 
wavelet. 

In this paper, the mixture model (Fig. 1), having the 
corporate characteristics of Gaussian and Laplace distribu-
tion, is proposed. For such purpose, the probability func-
tion of the proposed model is represented as the weighted 
sum of above two functions. The signal-independent 
AWGN is considered as noise. Using of Bayesian rule, 
corresponding MAP estimator will be derived as a 
closed-form equation. Assessments are performed with 
respect to visual quality, numerical efficiency, and 
complexity. 
 
 
2. IMAGE MODEL AND CONVENTIONAL 

METHODS 
 
2.1 Discrete Wavelet Transform and Two 

Dimensional signals 
 
For any signal )()( 2 RLtx  , the biorthogonal discrete 
wavelet transform (DWT) synthesis and analysis equations 
are written by: 
 
 
 

               (2.1) 
 

(2.2) 
 
Eq.(2.1) is the biorthogonal analysis (DWT) equation and 
Eq.(2.2) is the biorthogonal synthesis (Inverse-DWT) 
equation. 
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Fig. 1: Histogram of wavelet coefficients and various 

probability density functions. 

 

Two-dimensional (2-D) signals, such as image, can be 
represented using a separable 2-D wavelet transform. A 
2-D separable transform is equivalent to two 1-D 
transforms in series.  

Noisy signal is represented by the sum of pure signal 
and noise. Since wavelet transform is a linear transform, 
transformed noisy observation can be written as: 

                
         y = w + n                 (2.3)  

 
Where y is wavelet transform of noisy signal, w is wavelet 
coefficient by clean image, and n is the transformed noise. 
 
 
2.2 Conventional Wavelet Based Denoising 

Algorithm 
 
2.2.1 Wavelet Thresholding  
 
As mentioned above, wavelet transform has smart energy 
compaction ability. A lot of signals have very small magni-
tude, simultaneously coefficients having large magnitude 
are sparse. Therefore small signals can be regarded as noise, 
and thresholding them will well preserve the important 
structure of original signal. 

There are two categories of thresholding method. One 
is hard-threshold (H(w)) strategy. This method assumes 
that most of noise signal concentrate near zero point. 
 
 

              (2.4)  
 
On the other hand, soft-threshold (S(w)) strategy as-
sumes that coefficients are contaminated both within 
threshold range and outer bound. 

 
 

(2.5) 
 

The hard-threshold is very sensitive to the condition of 
noise level. Due to this reason, in many applications the 
soft-threshold has been frequently used than the 
hard-threshold. 
 
2.2.2 Bayesian Estimation Using Wavelet Distribu-

tion 
 

Bayesian solutions for noise removal can be categorized 
into two types: one is MMSE (minimum mean squares er-
ror) estimator and the other is MAP (maximum a posteriori) 
estimator. First, MMSE aims to find the estimates to 
minimize the squared errors between original image and 
noisy observation. Its result can be written as following 
conditional mean: 
 

              (2.6) 
 

Using Bayes rule, we can develop more above equation: 
 

               
              (2.7) 

 
 
where Pw(…) is the distribution of noise free signals, Pn(…) 
is the distribution of AWGN, and is the MMSE 
estimate. There is also a way to minimize the estimation 
error, which is maximizing the posteriori density function 

Such MAP estimator can be formulated as: 

                      
                 (2.8) 

 
Using Bayes rule similarly to before, following can be ac-
quired: 
 

(2.9) 
 

In many applications, these two approaches result in the 
almost same result. 
 
 

3. IMAGE DENOISING BASED ON 
MIXTURE DISTRIBUTIONS  

IN WAVELET DOMAIN 
 

3.1 New Mixture Model 
 
There are some limits to describe such density function 
using only one model. Therefore, the mixture model is a so 
attracting solution. 
   In this paper, we propose the following mixture model, 
which is the combination of one Gaussian distribution and 
one Laplace distribution with the same variance. This is 
given by: 

 
(3.1) 

 
where c1 + c2 = 1 and  0 ≤ ci ≤ 1 for i=1, 2. Later, we use 
this density function to derive the MAP solution, and fil-
trate the noisy image spatial-adaptively using sample 
kurtosis and local variance.  
 
 
3.2 MAP Estimation 
 
From Eq.(2.3), The formulation of MAP is as following: 

 
(3.2) 

 



 


)(0

.)(
)(

else
Threswifw

wH

dwywwPw ywMMSE )(ˆ 





















dwwPwyP

dwwPwywP
w

wn

wn
MMSE

)()(

)()(
ˆ

mmseŵ
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By applying Bayesian rule and assuming zero-mean Gaus-
sian noise, the following MAP estimate of w can be ob-
tained: 
 

                (3.3) 
 
3.2.1 Single Laplace Assumption 
 
There can be some choice of a priori knowledge      
First example is on single Laplace assumption. 

                 
 

                   (3.4) 
 
where sign(w) is either  +1  if  w > 0  or  -1  if  w < 0. For 
most cases, it is usually accepted that sign(w)is the same 
sign(y). Therefore, the following equation is obtained: 
 

             (3.5) 
 

where max{A, B} represents the bigger value between A 
and B. 
 
3.2.2 Single Gaussian Assumption 
 
Another example is the Gaussian case. If       is Gaus-
sian, then Eq.(3.3) can be written as: 
 

                   (3.6) 
 

This leads to the following equation as 
 

                    (3.7) 
 

As seen above, MAP estimators are expressed as the 
closed-form, which need very simple calculations in 
contrast to MMSE case. That is to say, MAP is the smart 
estimator regarding less complexity and produces a good 
result similar to MMSE. 
 
3.2.3 Proposal Model : Mixture of Laplace and 

Gaussian 
 
As discussed above, the proposed model consists of two 
functions (Laplace and Gaussian). The new mixture model 
is proposed as: 
 

               (3.8) 
 

Therefore, in this paper, Gaussian and Laplace PDF are 
used as, 
 

            (3.9) 
 

where a is a constant between 0 and 1, ),( G   
represents the Gaussian distribution with zero-mean and 
variance 2 , and ),( L represents the Laplace distribu-
tion with zero-mean and variance 2 . 
   From Eq.(3.9), the following estimate is described: 
 

                              (3.10) 

where PG(y) is the probability that w is originated from 
G(·,·) and PL(y) is the probability that w is originated from 
L(·,·). In addition, the term is an estimate of w 
based on the assumption that w is originated from G(·,·) 
and is an estimate of w based on the assumption 
that w is originated from L(·,·).  

For further proceedings, consider the PDF of noisy 
observation y. The PDF of y is calculated by the convolu-
tion of the PDF of w and the distribution of  n: 
 

                               (3.11) 
 
From Eq. (3.9), Eq. (3.11) can be written as following: 
 

                                                  (3.12) 
 

(3.13) 
   

Now, return to Eq. (3.10). Weight probability PG(y) and 
PL(y) can be calculated as: 
 

                (3.14) 
 
 

             (3.15) 
 
 
For implementation, more numerical treatments will be 
presented. If we re-write the above weight probability, then 
 
 

          (3.16) 
 
Because PG(y)+PL(y)=1, the other weight is given by: 
 

                    (3.17) 
 
Thus final estimate is written by:  
 

                (3.18)       
 
 
3.3 Kurtosis 
 
The need of incorporating the kurtosis in image processing 
is owing to the special distribution of wavelet coefficients. 
Kurtosis can be estimated as following: 

              
         

(3.19) 
 

By this relationship, the weight a can be expressed as: 
 
 
 
 

      
  
 (3.20) 
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4. EXPERIMENTAL RESULTS 
 
Several conventional algorithms are applied to three stan-
dard images whose size are all 512ｘ512 (“lena”, “boat”, 
and “babara”) to compare with proposed algorithm. Baye-
sianShrink method and LAWML method are based on the 
Laplacian distribution assumption and Gaussian distribu-
tion assumption, respectively. 

In order to estimate the variance (σ2), ML (Maximum 
Likelihood) method is used because the results from ML 
are superior to those from MAP in our experiments. Also, 
variance of noise signal can be estimated by using 
information in the HH1 band. Equations are as following: 

 
 

              (4.1) 
 
 
 

            (4.2) 
 
In Eq. (4.1), N is the number of neighborhood pixels. 
As we can see in Table 1, proposed method works best 
among other conventional algorithms. Especially for “lena” 
case, it outperforms about +1dB than other algorithms. In 
view of visual aspects, proposed method removes noise 
effectively on the flat region so that visual quality of the 
proposed method is better than others. Also, proposed me-
thod is superior to the others in view of complexity. Be-
cause conventional methods using mixture model [4][5] 
require  iterative calculation for parameters estimation, 
they demands relatively large loads. On the other hand, 
proposed method is less complex, because the method 
calculates using the closed-form. In our experiments, 
Daubechies 9/7 filter is adopted for wavelet transform. 
 
 

5. CONCLUSION 
 
In this paper, an effective noise removal algorithm is pro-
posed. Denoising process is conducted in wavelet domain. 
In proposed method, its highly clustering characteristics 
are investigated for noise elimination in two dimensional 
signals. In order to utilize intra-scale dependencies, a new 
mixture distribution is introduced, which is combined with 
Bayesian estimation. The results are superior to several 
conventional methods in the view of performance aspects. 
In addition to its good performance, proposed method is 
very practical because it use very-customized wavelet 
transform and is expressed as a closed-form. These 
low-complexity features of proposed algorithm are ex-
pected that our method be more available to real situation. 
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Table 1: PSNR values [dB] from several noise removal 
algorithms 

 BayesShrink LAWML5ｘ5 Propose 
lena 
∂୬ଶ ൌ 100 33.32 34.13 34.77 
∂୬ଶ ൌ 400 30.17 30.46 31.51 
boat 
∂୬ଶ ൌ 100 32.24 32.24 32.35 
∂୬ଶ ൌ 400 28.14 28.50 28.96 
babara 
∂୬ଶ ൌ 100 30.86 32.54 32.63 
∂୬ଶ ൌ 400 27.13 28.43 28.61 

 

(a)                      (b) 

(c)                      (d) 

Fig. 2: Noisy image and denoising result. (a) Noisy image 
(σn

2=400) (b) 5ｘ5LAWML (c) BayesShrink (d) Propose 
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