• Title/Summary/Keyword: Gaussian Kernel

Search Result 137, Processing Time 0.023 seconds

Outlier Robust Learning Algorithm for Gaussian Process Classification (가우시안 과정 분류를 위한 극단치에 강인한 학습 알고리즘)

  • Kim, Hyun-Chul;Ghahramani, Zoubin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.485-489
    • /
    • 2007
  • Gaussian process classifiers (GPCs) are fully statistical kernel classification models which have a latent function with Gaussian process prior Recently, EP approximation method has been proposed to infer the posterior over the latent function. It can have a special hyperparameter which can treat outliers potentially. In this paper, we propose the outlier robust algorithm which alternates EP and the hyperparameter updating until convergence. We also show its usefulness with the simulation results.

  • PDF

Deconvolution of Detector Size Effect Using Monte Carlo Simulation (몬데카를로 시뮬레이션을 이용한 검출기의 크기효과 제거)

  • Park, Kwangyl;Yi, Byong-Yong;Young W. Vahc
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.100-104
    • /
    • 2004
  • The detector size effect due to the spatial response of detectors is a critical source of inaccuracy in clinical dosimetry that has been the subject of numerous studies. Conventionally, the detector response kernel contains all the information about the influence that the detector size has on the measured beam profile. Various analytical models for this kernel have been proposed and studied in theoretical and experimental works. Herein, a method to simply determine the detector response kernel using the Monte Carlo simulation and convolution theory has been proposed. Based on this numerical method, the detector response kernel for a Farmer type ion chamber embedded in a water phantom has been obtained. The obtained kernel shows characteristics of both the pre-existing parabolic model proposed by Sibata et al. and the Gaussian model used by Garcia-Vicente et al. From this kernel and deconvolution technique, the detector size effect can be removed from measurements for 6MV, 10${\times}$10 $\textrm{cm}^2$ and 0.5${\times}$10 $\textrm{cm}^2$photon beams. The deconvolved beam profiles are in good agreements with the measurements performed by the film and pin-point ion chamber, with the exception of in the tail legion.

  • PDF

Segmentation of Ganglion Cyst Ultrasound Images using Kernel based FCM (커널 FCM을 이용한 결절종 초음파 영상 분할)

  • Park, Tae-eun;Song, Doo-heon;Kim, Kwang-baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.144-146
    • /
    • 2022
  • 본 논문에서는 Kernel based Fuzzy C-Means(K-FCM) 기반 양자화 기법을 적용하여 의료 초음파 영상에서 특징을 분할하는 기법을 제안한다. 결절종의 경우에는 초음파 영상 내에서 무에코, 저에코의 특징을 가진 낭포성 종양 객체를 특징 영역으로 영상을 분할한다. K-FCM 클러스터링은 기존의 FCM 클러스터링에서 Kernel Function을 적용한 형태의 클러스터링 기법이다. 본 논문에서는 Gaussian Kernel 기반 K-FCM을 적용하여 의료 초음파 영상에서 특징들을 분할하였다. 결절종 초음파 영상에서는 FCM 클러스터링이 F1 Score가 85.574%로 나타났고, K-FCM이 86.442%로 나타났다.

  • PDF

IKPCA-ELM-based Intrusion Detection Method

  • Wang, Hui;Wang, Chengjie;Shen, Zihao;Lin, Dengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3076-3092
    • /
    • 2020
  • An IKPCA-ELM-based intrusion detection method is developed to address the problem of the low accuracy and slow speed of intrusion detection caused by redundancies and high dimensions of data in the network. First, in order to reduce the effects of uneven sample distribution and sample attribute differences on the extraction of KPCA features, the sample attribute mean and mean square error are introduced into the Gaussian radial basis function and polynomial kernel function respectively, and the two improved kernel functions are combined to construct a hybrid kernel function. Second, an improved particle swarm optimization (IPSO) algorithm is proposed to determine the optimal hybrid kernel function for improved kernel principal component analysis (IKPCA). Finally, IKPCA is conducted to complete feature extraction, and an extreme learning machine (ELM) is applied to classify common attack type detection. The experimental results demonstrate the effectiveness of the constructed hybrid kernel function. Compared with other intrusion detection methods, IKPCA-ELM not only ensures high accuracy rates, but also reduces the detection time and false alarm rate, especially reducing the false alarm rate of small sample attacks.

Dual-Encoded Features from Both Spatial and Curvelet Domains for Image Smoke Recognition

  • Yuan, Feiniu;Tang, Tiantian;Xia, Xue;Shi, Jinting;Li, Shuying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2078-2093
    • /
    • 2019
  • Visual smoke recognition is a challenging task due to large variations in shape, texture and color of smoke. To improve performance, we propose a novel smoke recognition method by combining dual-encoded features that are extracted from both spatial and Curvelet domains. A Curvelet transform is used to filter an image to generate fifty sub-images of Curvelet coefficients. Then we extract Local Binary Pattern (LBP) maps from these coefficient maps and aggregate histograms of these LBP maps to produce a histogram map. Afterwards, we encode the histogram map again to generate Dual-encoded Local Binary Patterns (Dual-LBP). Histograms of Dual-LBPs from Curvelet domain and Completed Local Binary Patterns (CLBP) from spatial domain are concatenated to form the feature for smoke recognition. Finally, we adopt Gaussian Kernel Optimization (GKO) algorithm to search the optimal kernel parameters of Support Vector Machine (SVM) for further improvement of classification accuracy. Experimental results demonstrate that our method can extract effective and reasonable features of smoke images, and achieve good classification accuracy.

Hyper-ellipsoidal clustering algorithm using Linear Matrix Inequality (선형행렬 부등식을 이용한 타원형 클러스터링 알고리즘)

  • Lee, Han-Sung;Park, Joo-Young;Park, Dai-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.300-305
    • /
    • 2002
  • In this paper, we use the modified gaussian kernel function as clustering distance measure and recast the given hyper-ellipsoidal clustering problem as the optimization problem that minimizes the volume of hyper-ellipsoidal clusters, respectively and solve this using EVP (eigen value problem) that is one of the LMI (linear matrix inequality) techniques.

Blind Algorithms with Decision Feedback based on Zero-Error Probability for Constant Modulus Errors

  • Kim, Nam-Yong;Kang, Sung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.753-758
    • /
    • 2011
  • The constant modulus algorithm (CMA) widely used in blind equalization applications minimizes the averaged power of constant modulus error (CME) defined as the difference between an instant output power and a constant modulus. In this paper, a decision feedback version of the linear blind algorithm based on maximization of the zero-error probability for CME is proposed. The Gaussian kernel of the maximum zero-error criterion is analyzed to have the property to cut out excessive CMEs that may be induced from severely distorted channel characteristics. Decision feedback approach to the maximum zero-error criterion for CME is developed based on the characteristic that the Gaussian kernel suppresses the outliers and this prevents error propagation to some extent. Compared to the linear algorithm based on maximum zero-error probability for CME in the simulation of blind equalization environments, the proposed decision feedback version has superior performance enhancement particularly in cases of severe channel distortions.

Gaussian Process Regression and Its Application to Mathematical Finance (가우시언 과정의 회귀분석과 금융수학의 응용)

  • Lim, Hyuncheul
    • Journal for History of Mathematics
    • /
    • v.35 no.1
    • /
    • pp.1-18
    • /
    • 2022
  • This paper presents a statistical machine learning method that generates the implied volatility surface under the rareness of the market data. We apply the practitioner's Black-Scholes model and Gaussian process regression method to construct a Bayesian inference system with observed volatilities as a prior information and estimate the posterior distribution of the unobserved volatilities. The variance instead of the volatility is the target of the estimation, and the radial basis function is applied to the mean and kernel function of the Gaussian process regression. We present two types of Gaussian process regression methods and empirically analyze them.

Applied linear and nonlinear statistical models for evaluating strength of Geopolymer concrete

  • Prem, Prabhat Ranjan;Thirumalaiselvi, A.;Verma, Mohit
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.7-17
    • /
    • 2019
  • The complex phenomenon of the bond formation in geopolymer is not well understood and therefore, difficult to model. This paper present applied statistical models for evaluating the compressive strength of geopolymer. The applied statistical models studied are divided into three different categories - linear regression [least absolute shrinkage and selection operator (LASSO) and elastic net], tree regression [decision and bagging tree] and kernel methods (support vector regression (SVR), kernel ridge regression (KRR), Gaussian process regression (GPR), relevance vector machine (RVM)]. The performance of the methods is compared in terms of error indices, computational effort, convergence and residuals. Based on the present study, kernel based methods (GPR and KRR) are recommended for evaluating compressive strength of Geopolymer concrete.

ERROR BOUNDS FOR GAUSS-RADAU AND GAUSS-LOBATTO RULES OF ANALYTIC FUNCTIONS

  • Ko, Kwan-Pyo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.797-812
    • /
    • 1997
  • For analytic functions we give an expression for the kernel $K_n$ of the remainder terms for the Gauss-Radau and the Gauss-Lobatto rules with end points of multiplicity r and prove the convergence of the kernel we obtained. The error bound are obtained for the type $$\mid$R_n(f)$\mid$ \leq \frac{1}{\pi}l(\Gamma) max_{z \in \Gamma} $\mid$K_n(z)$\mid$ max_{z \in \Gamma} $\mid$f(z)$\mid$$, where $l(\Gamma)$ denotes the length of contour $\Gamma$.

  • PDF