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Abstract 
 

Visual smoke recognition is a challenging task due to large variations in shape, texture and 
color of smoke. To improve performance, we propose a novel smoke recognition method by 
combining dual-encoded features that are extracted from both spatial and Curvelet domains. A 
Curvelet transform is used to filter an image to generate fifty sub-images of Curvelet 
coefficients. Then we extract Local Binary Pattern (LBP) maps from these coefficient maps 
and aggregate histograms of these LBP maps to produce a histogram map. Afterwards, we 
encode the histogram map again to generate Dual-encoded Local Binary Patterns (Dual-LBP). 
Histograms of Dual-LBPs from Curvelet domain and Completed Local Binary Patterns 
(CLBP) from spatial domain are concatenated to form the feature for smoke recognition. 
Finally, we adopt Gaussian Kernel Optimization (GKO) algorithm to search the optimal kernel 
parameters of Support Vector Machine (SVM) for further improvement of classification 
accuracy. Experimental results demonstrate that our method can extract effective and 
reasonable features of smoke images, and achieve good classification accuracy. 
 
 
Keywords: Curvelet Transform, Dual-encoded Local Binary Pattern (Dual-LBP), 
Completed Local Binary Pattern (CLBP), Gaussian Kernel Optimization (GKO), Smoke 
Recognition 

 
This research was supported by National Natural Science Foundation of China (Grant No. 61862029, Grant No. 
61562031), Science Technology Application Project of Jiangxi Province (No. GJJ170317). 
 
http://doi.org/10.3837/tiis.2019.04.019                                                                                                               ISSN : 1976-7277 

mailto:icanflysjt@126.com


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019                              2079 

1. Introduction 

Generally, fire causes significant economic losses and probably lead to severe death. In order 
to avoid fire occurrence, many traditional fire detection technologies have been widely used. 
These methods are usually based on temperature sensors, humidity sensors, and traditional 
ultraviolet and infrared fire detectors. Since traditional methods need to sample combustion 
products for analysis, they are required to be placed in the vicinity of fire. In addition, 
traditional detectors are susceptible to external environment influences, such as airflow, dust. 
Traditional methods cannot provide us with detailed information about burning situation. 
Therefore, traditional smoke detectors are unreliable in open, large and special spaces. 

In most cases, fire will be initially accompanied by the emergence of smoke, and smoke 
often lasts for a few minutes before flames emerge. According to this observation, visual 
smoke detection methods detect smoke from videos or images, and they are able to give early 
alarms of fire. 

Early smoke has special visual features, such as color, texture, and shape, which play an 
important role in fire detection. There are many texture feature extraction methods that have 
been proposed. Gray-level co-occurrence matrices [1] is a way to describe texture by 
exploring spatial correlation between gray values of neighboring pixels. LBP [2] provides a 
binary-coding feature extraction manner by encoding the relationship between central pixels 
and their neighboring pixels. HOG [3] extracts features of edges and gradients. 

Many methods can achieve excellent performance by capturing multi-scale and 
multi-direction information in transform or frequency domains. Compared with other 
transforms, Curvelet transform is strongly anisotropic and its needle-shaped elements provide 
a high directional sensitivity to represent curved singularities in images. In contrast, wavelet 
transform shows a good representation only at point singularities because it has a poor 
directional sensitivity. Additional directional-based transforms, such as Dual-Tree Complex 
Wavelet Transform (DTCWT) and Gabor Wavelets, provide more multi-direction information 
than Wavelets, but they still have limited directional selectivity. Ridgelet is suitable for 
representing line singularities in objects, so it’s rarely found in practical applications [4].  

To extract discriminative features, we propose a novel feature extraction based on spatial 
and Curvelet domains. The main contributions of this paper are listed as follows: 

1) We use Curvelet transform to extract discriminative features from original images, and 
then encode these images consisting of discriminative Curvelet coefficients to generate LBP 
codes based on Curvelet domains.  

2) We first aggregate histograms of LBP maps from Curvelet domains to produce a 
histogram image of size 256×50, and then encode the histogram image again to generate novel 
codes, which are called Dual-encoded Local Binary Patterns (Dual-LBP). 

3) We concatenate histograms of Dual-LBPs from Curvelet domain and Completed Local 
Binary Patterns (CLBP) from spatial domain to generate dual-encoded features for smoke 
classification. Finally, we adopt Gaussian Kernel Optimization (GKO) algorithm to search the 
optimal kernel parameters of Support Vector Machine (SVM) for further improvement of 
classification accuracy. 
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2. Related Work 
There are many methods proposed for smoke detection. Chenebert et al. [5] presented a flame 
pixel detection method in video images or still images using a non-temporal texture driven 
approach. The method did not use any time information. Chen et al. [6] used a color model 
based on RGB for fire smoke detection. However, there are many objects having the same 
color distribution as fire, so the method gives a false alarm inevitably for these fire-like object. 
Celik et al. [7] proposed a universal color model for fire pixel detection, and the algorithm 
used the YCbCr color space to separate chrominance and luminance components more 
effectively than other color spaces (such as RGB). Yuan et al. [8] proposed an accumulative 
motion model based on integral image techniques. The model estimated movement directions 
of objects in real-time for analysis of smoke. Zhang et al. [9] proposed a real-time forest fire 
detection algorithm using artificial neural networks based on dynamic characteristics of fire 
regions segmented from video images. Yu et al. [10]presented a method by using color and 
motion features for video smoke detection. The method could distinguish smoke from objects 
with similar color distribution by involving motion features and color information, which 
greatly improved the reliability of video smoke detection. Toreyin et al. [11] achieved smoke 
detection based on edge magnitude differences, in which the characteristics of smoke such as 
movement, flashing, edge blur and color were used. Once the scene lacks obvious edges or 
cluttered objects, the method raises false alarms.  

Texture feature features play a key role in smoke detection, Ojala et al. [2] firstly proposed 
Local Binary Pattern (LBP) for texture classification. It is an efficient and simple gray-scale 
texture descriptor, which captures spatial characteristics of texture. LBP features have 
demonstrated very powerful discriminative capability, low computational complexity, and 
low sensitivity to illumination variations.  

To further improve the discriminative capability of LBP, many variants of LBP were 
proposed in the past decade. Yuan et al. [12] proposed an effective smoke detection method, in 
which features were extracted by concatenating histograms of local binary patterns (LBP) and 
local binary pattern variances (LBPV) from image pyramids, and an BP neural network was 
used for classification. Yuan et al. [13] presented sub-oriented histograms of LBP for image 
smoke classification. Gubbi et al. [14] proposed a video smoke detection algorithm based on 
wavelet and Support Vector Machines (SVM) classification. Liao et al. [15] proposed 
Dominant Local Binary Patterns (DLBP) for texture classification by regarding the more 
frequently occurred patterns as dominant features. Guo et al. [16] proposed a Completed LBP 
(CLBP) approach, which encoded the magnitudes and signs of differences between a center 
pixel and its neighbors. CLBP provides excellent classification performance. 

Above-mentioned methods extract features in spatial domains. Many methods achieve 
robust features from transform or frequency domains. Elaiwat et al. [17] proposed a 
multimodel Curvelet-based method for textured 3D face recognition. Each keypoint was 
detected across number of frequency bands and angles on 3D faces. Ucar et al. [18] presented 
an algorithm that was for facial expression recognition by integrating Curvelet transform and 
online sequential extreme learning machine (OSELM) with radial basis function (RBF) hidden 
node having optimal network architecture. 

Although Curvelet transform provides a powerful multi-scale capability to extract 
discriminative smoke features, Curvelet-based image classification methods are limited to 
features, since the Curvelet coefficients are regarded as a holistic features extracted from the 
whole images [19]. To this end, we propose a duplex feature coding approach based on 
Curvelet transform to extract features from interpolated smoke images. 
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Many papers have been proposed to optimize kernel functions. Chapelle et al. [20] devised 
a gradient-based algorithm, which optimized a kernel function with multiple unconstrained 
parameters for SVM. Ghiasi-Shirazi et al. [21] considered the problem of optimizing a kernel 
function over translation invariant kernels for the task of binary classification. Wu et al. [22] 
proposed a direct method to build sparse kernel learning algorithms by adding one more 
constraint to the original convex optimization problem for sparse large margin classifiers. Ye 
et al. [23] considered the problem of multiple kernel learning (MKL) for regularized kernel 
discriminant analysis (RKDA), in which the optimal kernel matrix was obtained as a linear 
combination of pre-specified kernel matrices. All above methods formulated the kernel 
learning problem as an optimization problem based on a special task, such as SVM. 

3. Our Algorithm 
The framework of our method is shown in Fig. 1. Our method consists of four main steps: 
Curvelet transform of original images, extraction of Dual-encoded Local Binary Patterns 
(Dual-LBP) on Curvelet coefficient sub-images, concatenation of histograms of Dual-LBP 
and Completed Local Binary Patterns (CLBP), and Gaussian Kernel Optimization (GKO) of 
SVM classification. 

Output 
label

Gaussian 
Kernel 

Optimization 
(GKO)FDCT

SVM
Completed Local Binary 

Patterns (CLBP)
Classification

Concatenated 
histogram

One CLBP map

Input  image

 Dual Local 
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Patterns 
(Dual-LBP)

 

Curvelet 
Transform

 
Fig. 1. The proposed smoke recognition framework 

3.1 Curvelet transform 
Curvelet transform was first proposed and structured with the tight frame by Candes and 
Donoho in 1999 [24]. Motivated by the need of image analysis, the second generation Curvelet 
transform [25] was introduced in 2005. It is not only simpler, but also faster and less redundant. 
Curvelets exhibit highly anisotropy and commendable directionality, which are beneficial for 
image edge representation. Smoke image edges are always curved, so Curvelet is almost the 
optimal representation of a singular smooth curve. 

A pair of window functions, which are called “radial window” and “angular window”, are 
defined as W(r) and V(t). These windows meet the following admissibility conditions: 
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Then, the frequency window Uj is defined: 
/2
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where / 2j    represents the integer part of j/2. Hence, the support of Uj is a polar “wedge” that 
is defined by the support of W and V. Varying scales j and directions U produce multi-scale 
and multi-direction transform. 

These digital transforms are linear. We take a Cartesian array f[t1, t2] (0≤t1, t2<n) as input 
and get an output of digital coefficients from the digital Curvelet transform. The digital 
Curvelet coefficients are defined: 
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where each , ,l

D
j kθϕ  is a digital mother Curvelet (the superscript D represents “digital”), t1 and t2 

are spatial variable, and j, θl and k are scale, orientation, and position index, respectively. 
In the first step of our method, bilinear interpolation is needed to generate normalized 

images of size 128×128 from original images with different sizes. The scale number of 
subbands is set to log2(min(w, h)−3), where w and h are width and height of input images, 
respectively. Hence, the scale is 4 for a 128×128 image. Digital Curvelet coefficients are 
real-valued. The multi-resolution Curvelet transform of different scales have different 
characteristics. Lower scales, denoted as coarser scales, contain low frequency information 
whereas higher scales, known as detailed and finer scales, consist of high frequency 
information.  

(a) An interpolated image (b) Curvelet coefficients at 4 scales
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Fig. 2. The four-scale Curvelet coefficients of a smoke image 

To implement Curvelet transforms, we first perform a 2D FFT on the interpolated 128×128 
image. Then the 2D Fourier frequency plane of the image is divided into many parabolic 
wedges. Finally, an inverse FFT of each wedge is applied to find the Curvelet coefficients at 
each scale j (j=1,2,3,4) and angle θl, and the range of l varies at different scales. An example of 
Curvelet coefficients at each scale is shown in Fig.  2. A red rectangular box stands for the 
coefficient map at one scale on one direction. The coefficient at scale 1 is displayed in the 
center. The coefficients at scale 2 on 8 directions and those at scale 3 on 16 directions are 
displayed in two loops around scale 1. Each block is equivalent to the pseudo polar tiling of the 
frequency plane with trapezoids. 
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There are two different digital implementations of Fast Digital Curvelet Transform (FDCT), 
which are based on Unequally Spaced Fast Fourier Transform (USFFT) and Wrapping 
Transform, respectively. In this paper, we use wrapping based Curvelet for feature extraction. 
The procedure of Curvelet based on wrapping is as follow:  
(1). Apply the 2D FFT and obtain Fourier samples 

1 2 1 2
ˆ[ , ], / 2 , / 2f n n n n n n− ≤ ≤ , where n1 and n2 are frequency-domain variable.  

(2). For each scale j and angle θl, form the product 

, 1 2 1 2
ˆ[ , ] [ , ]

ljU n n f n nθ
  

(3). Wrap this product around the origin and obtain 

, 1 2 , 1 2
ˆ[ , ] ( )[ , ]

lj l jf n n W U f n nθ=
 , where 0≤ n1 <L1, j and 0≤ n2 <L2, j for θl∈(−π/4, π/4). 

(4). By applying the inverse 2D FFT to each ,j lf , discrete coefficients ( , , )Dc j l k  are obtained. 

According to the above process, as shown in Fig. 2, we obtain a set of coefficient maps with 
four scales and sixteen directions from a normalized smoke image. Thus, we obtain coefficient 
maps containing coarse-to-fine and multi-directional texture information. The first and fourth 
scales contain only one coefficient map, and the second and third scales contain sixteen and 
thirty-two coefficient maps, respectively. It is worth noting that coefficient maps are in 
different sizes.  

Being different from other traditional multi-scale transforms like wavelet transform, the 
coefficient map generated by Curvelet contains directional information of smoke, elevates 
ability to represent smoke textures and singularities along smoke edges.  
To extract features from these coefficient maps, we propose Dual-encoded Local Binary 
Patterns (Dual-LBP) to get information on each coefficient map. 

3.2 Dual-encoded Local Binary Patterns 
LBP is a gray-scale texture descriptor and can achieve rotation invariance after being mapped 
to RI (Rotation Invariant) pattern [2]. LBP captures spatial structures of textures in an image 
by encoding differences between one central pixel and its local neighborhood. However, 
structural frequency information is not involved in LBP codes. To solve this problem, we use 
LBPs to extract frequency structures of images from Curvelet coefficient maps with different 
scales, orientations and locations. 

In the Curvelet coefficients, the first scale contains only one coefficient map c(1,1), the 
second one contains sixteen coefficient maps c(2,l) (l=1, 2,…, 16), and the third one contains 
thirty-two coefficient maps c(3,l) (l=1, 2,…, 32), and the fourth scale also contains only one 
coefficient map c(4,1). We compute LBP maps from coefficient maps of all scales. These LBP 
maps on coefficient maps can capture variations of coefficients in a local region for all scales. 
To avoid interpolation of coefficients, we employ a 3×3 rectangular neighborhoods instead of 
circular neighborhoods to compute an LBP codes as follows: 
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where , ( , )m nc j l  denotes the value of a central point (m, n) in a coefficient map c(j, l), , ( , )p
m nc j l  

is the value of the pth neighbor of the center point (m, n), P is the number of neighbors, s(x) is 
a binarization function that returns 0 for negative values and 1 otherwise, and mapm,n(j, l) is 
just an original LBP code at pixel (m, n) for the coefficient map c(j, l).  

Since we have a set of coefficient maps c(j, l), we obtain 50 LBP maps map(j, l) from these 
coefficient maps. LBP codes of each coefficent contain contrast information in local regions. 
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We compute the histogram of each coefficient LBP code map map(j, l), formulated as follows: 
1 1
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where δ(x) is a function that returns 1 for x=0 and 0 otherwise. 
We can obtain a lot of histograms Hj,l∈R256×1 from a set of coefficient LBP maps map(j, l). 

In our implementation, the first scale has only one histogram H1,1, the second one generates 16 
histograms H2,l (l=1,…,16), the third one obtains 32 histograms H3,l (l=1,…,32), and the fourth 
scale also has only one histogram H4,1. Therefore, we have 50 histograms. To combine 
information from different scales and orientations, we aggregate all these histograms together 
to form an LBP histogram map of size 256×50, formulated as follows: 

M=[H1,1, H2,1,…, H2,16, H3,1,…, H3,32, H4,1]                                     (7) 
where Hj,l is just a column vector of the histogram map M, which represents the histogram of 
each LBP map c(j,l). 

Hence, we obtain the new map M that is aggregated by normalized LBP histograms with 
256 bins from fifty coefficient maps. Apparently, the size of the aggregated histogram map M 
is equal to 256×50. 

In the second step of encoding, we apply the LBP encoding method again on the histogram 
map M to generate another LBP map, defined as follows: 
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where Em,n is an Dual-LBP code at a center point (m, n), Mm,n is the value of the aggregated 
histogram map at the center point, and ,

p
m nM  is the pth neighboring value of the center point. 
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Fig. 3.  Dual-Encoded features from Curvelet coefficient maps 

Thus, we obtain another new LBP map from the histogram map M. Then we compute the 
histogram of the histogram map M. Dual-LBP extracts more details about frequent features 
from smoke images. The framework of Dual-LBP Encoding method is shown in Fig. 3. 

3.3 Completed Local Binary Patterns 
The original LBP is a computationally simple and efficient operator, but it only computes 
differences between a center pixel value and its corresponding neighbors’ gray values. The 
original LBP operator discards the magnitudes of differences by encoding the signs of 
differences in a 3×3 rectangular neighborhood. 

Guo et al. [16] proposed CLBP, an extension of the original LBP operator. The CLBP 
operator contains three operators, which are denoted as CLBP_S, CLBP_C and CLBP_M, 
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respectively. The CLBP_S operator is just the same as the original LBP operator, which 
encodes the sign of local differences to reflect directions of local gradients. While CLBP_M 
involves the magnitudes to preserve variance information. CLBP_C encodes the differences 
between local center pixels and the global one to represent whole image gray levels. CLBP_C 
and CLBP_M are defined as follows: 

, 1_ ( )P R cCLBP C s g c= −                                                    (9) 
1

, 2
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P

p
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p
CLBP M s m c

−

=

= −∑                                            (10) 

where c1 is the average gray level of the whole image, c2 is the mean difference magnitude of 
local neighborhood, gc is the gray level of the center point, and mp is the magnitude of the pth 
local difference, s(x) is defined as a binarization function, which is the same as Eq. (5). 

3.4 Final features 
We use CLBP to obtain three kinds of codes, which are CLBP_S, CLBP_C and CLBP_M, 

for each pixel. We compute a joint 2D histogram of CLBP_M and CLBP_C, and then reshape 
the 2D histogram to a 1D histogram. Finally, we concatenate the 1D histogram with the 
histogram of CLBP_S to obtain the histogram HCLBP of CLBP. The histogram Em,n of 
Dual-LBP method captures frequency features of images in Curvelet domains. The CLBP 
method is encoded textures of images in spatial domains. We think that visual characteristics 
of smoke can be better captured if we combine spatial and frequency information. Hence, the 
final histogram H is obtained by combining Em,n and HCLBP, formulated as follows: 

H=[Em,n, HCLBP]                                                      (11) 
After extracting features, we will consider the issue of features classification. We input the 

obtained histogram H into SVM for training and testing. 
Since Curvelet coefficients contain components of different frequency, which correspond to 

different spatial distribution, they reflect spatial texture structure. Dual LBP models the 
relations between different coefficients to intrinsically captures co-occurrence texture 
structure. In other words, the proposed Dual LBP describes smoke textures in a macroscopic 
view [26]. 

3.5 Classification using SVM with GKO 
We used Support Vector Machines (SVM) [27] to solve the image smoke classification 
problem. SVM is widely used in different fields such as clustering, classification, and 
dimensionality reduction. SVM is divided into two forms, which are linearly separable and 
linearly inseparable, respectively. Here we involve kernel trick to deal with linear inseparable 
features. Kernel trick is thus a way to implicitly transform linear inseparable features of data 
onto a new space where the data becomes linearly separable [28]. The implicit new space is 
always higher-dimensional (possibly infinite) [29]. In general, the Gaussian kernel function, 
also known as Radial Basis Function (RBF) [30], to describe the relationship between every 
two feature vectors, as shown in Eq. (12), 

2

2( , ) exp( )
2σ
−

= −K i j
i j

x x
x x                                              (12) 

where K(xi, xj) is the correlation or similarity between each two features xi and xj that are 
histograms H. 

The earliest method of optimizing β=2σ2 is to use cross-validation or grid search. One of the 
most well known methods is leave-one-out, which leaves only one sample as the test set and 
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the remaining samples as the training set. Because each sample is repeatedly used during 
iterations, the method consumes a large amount of computation time. Hence, we use Gaussian 
Kernel Optimization (GKO) [31] to optimize β in our experiments. 

GKO is a kernel optimizing method for unsupervised learning, which is different from 
optimized methods of other supervised learning. The GKO method does not need any 
constraints, and the β value obtained by the GKO method can be used as a starting point for 
further optimization. Hence, we use the GKO method to calculate the optimal value of β in eq. 
(12). We define random variable Yij=Xij

2/σ2 that satisfies the non-central Chi-square 
distribution with a degree of freedom one, where ijX = −i jx x  and the variance 

1 1
2

2
0 1

1 ( )
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X
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= =

= −∑∑ . The optimal value of β can be obtained by the following equation: 
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where L(λ) represents a function of λ. The relationship between λ and L(λ) is shown in Fig. 4, 
where λ=(µ/σ)2, and 
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= ∑∑  represents the mean of the data set. The detailed proof of 

Eq. (13) is provided in [31]. 
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Fig. 4.  Relationship between λ and L(λ) when λ ∈(0.01, 100) 

According to the above method, β is optimized. In our smoke recognition experiments, 
gamma =1/β = 4.6283 in the kernel function and the cost c=35 in the loss function. 

4. Experimental Results and Analysis 

4.1 Data sets 
Several experiments were conducted on four data sets, each of which has an imbalanced 
number of smoke and non-smoke images. All images were manually cropped, resized and 
labeled as smoke images or non-smoke images. Smoke images of the data sets are easily 
distinguished by human eyes. The data sets are available at 
http://staff.ustc.edu.cn/~yfn/index.html. Smoke images of all datasets were resized to the size 
of 48×48 and converted to grayscale images for feature extraction. Table 1 lists the details of 
the data sets. We used Set1 for training, and Set2, Set3, and Set4 for testing. Some samples are 
shown in Fig. 5. It can be seen that both intra-class and inter-class variances of smoke and 
non-smoke images are very large. 

 

http://staff.ustc.edu.cn/%7Eyfn/index.html
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Table 1.  The image datasets 

Data sets Total number 
of images 

Number of 
smoke images 

Number of 
non-smoke images Usage 

Set1 1383 552 831 Training 
Set2 1505 688 817 Testing 
Set3 10712 2201 8511 Testing 
Set4 10617 2254 8363 Testing 

 

(e)

(a)

(c)

(g)

(f)

(b)

(d)

(h)  
Fig. 5. Samples from the four data sets. (a) Smoke and (b) non-smoke images from Set 1. (c) Smoke 
and (d) non-smoke images from Set 2. (e) Smoke and (f) non-smoke images from Set 3. (g) Smoke and 

(h) non-smoke images from Set 4. 

4.2 Implementation of compared methods 
In order to verify the effectiveness of our method, we compared our method with some 
state-of-the-art algorithms by the three evaluation criteria in [32], which are Detection Rate 
(DR), False Alarm Rate (FAR) and Error Rate (ERR). They are defined as follows: 

( ) ( )

100%
100%

100%

p p

p n

p p p p n

DR P Q
FAR N Q

ERR Q P N Q Q

= ×

= ×

= − + + ×

                          (14) 

where Pp and Np respectively denote the numbers of accurately detected true positive samples 
and negative samples mistakenly classified as positive samples, and Qp and Qn are the numbers 
of positive and negative samples, respectively. 

4.3 Analysis of results 
In our experiments, we used several feature extraction methods to validate the ability of our 
method to distinguish between smoke and non-smoke images on the three test sets. These 
compared methods are DRLBP [33], CLBP [16], LDBP [34], PLBP [35], PRICoLBP [36], 
MDLBP [37] LTrP [38] and DFD [39]. The compared LBP variants are all un-mapped for fair 
comparisons. The threshold for LTrP is set to 0.1 to demonstrate better performance, and g for 
RBF in SVM is set to 1/1383 for all other comparison features. For DFD, default setting is 
adopted to extract features. 
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We involve LBP and CLBP in our feature extraction step. Dual-LBP features based on the 
Curvelet domain and CLBP features on spatial domain are combined to form the final feature. 
In our CLBP, histograms of sign component and joint histograms of magnitude and center 
pixel maps are cocatenated to form CLBP_S_M/C. Finally, we aggregate dual LBP and CLBP 
features (denoted as Dual-LBP + CLBP) as our final feature vector, whose dimension is 
256+768=1024. 

Table 2.  Experimental results for smoke detection 

Methods 
Set2(%) Set3(%) Set4(%) 

Year DR FAR ERR DR FAR ERR DR FAR ERR 
Our method 96.7 1.47 2.33 95.5 2.81 3.15 95.7 2.64 3.00 N.A. 

DRLBP 95.8 2.82 3.46 95.0 3.30 3.65 95.1 2.80 3.25 2016 
CLBP 96.4 2.33 2.92 95.6 3.54 3.71 94.5 2.98 3.50 2010 
PLBP 95.1 2.69 3.72 94.0 6.98 6.79 93.4 6.07 6.19 2011 
LDBP 97.5 4.65 3.65 97.2 6.07 5.40 97.8 5.48 4.78 2017 

PRICoLBP 95.5 2.57 3.46 94.0 3.69 4.17 94.5 3.23 3.71 2014 
MDLBP 97.7 4.16 3.32 97.3 3.83 3.60 97.2 3.29 3.18 2016 

LTrP 97.4 3.18 2.92 94.9 3.61 3.91 94.8 3.72 4.04 2012 
DFD 92.0 4.28 5.98 92.1 11.90 11.10 91.4 11.30 12.00 2014 

 
From Table 2, we find that our method achieves lower FARs than other methods on three 

testing data sets. MDLBP involves information across RGB channels, so it obtains the best 
DRs among all the methods. While all the other LBP variants are conducted on grayscale 
images. So it does not provide fair comparisons. 

At the same time, the DRs got by our method are not obviously higher than other methods. 
Hence, ROC (Receiver Operating Characteristic Curve) is adopted to present a more 
comprehensive comparison, as shown in Fig. 6. By varying classification threshold t from -1 
to 1 at step 0.1, DR and FAR pairs are obtained at every step to plot ROC. 

 
Fig. 6. ROCs of comparison methods on Set2, Set3 and Set4. 

Although the DRs of our method do not exceed the ones of other methods obviously, the 
ROCs illustrate that our method outperforms others, which means that the best classification 
planes are not always at t=0. 

The encoding step in our method can be replaced by any LBP-based methods. For instance, 
in Table 2 and Fig. 6, Dual-LBP + CLBP is adopted. Similarly, the other three combinations 
are Dual-LBP + LBP, Dual-CLBP + CLBP, Dual-CLBP + LBP. The experimental results of 
the 4 combinations are shown in Table. 3.  

Although the FAR of our method is not the lowest on Set3 and Set4, the DR of our method 
is highest and ERR is lowest. Overall, our Dual-LBP +CLBP performs best among all the 

0.7 

0.8 

0.9 

1 

0 0.05 

set2 

DRLBP 
CLBP 
PRICoLBP 
LTrP 
LDBP 
Our method 

0 0.05 

set3 

0 0.05 

set4 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 4, Apr. 2019                              2089 

combinations. 
Table 3.  Comparisons of 4 combinations for our method 

Methods Set2(%) Set3(%) Set4(%) 
DR FAR ERR DR FAR ERR DR FAR ERR 

Dual-LBP+CLBP 96.7 1.47 2.33 95.5 2.81 3.15 95.7 2.64 3.00 
Dual-LBP+LBP 96.1 2.45 3.12 93.9 2.60 3.32 94.4 2.43 3.11 

Dual-CLBP+LBP 94.3 2.57 3.99 93.1 2.84 3.69 93.3 2.64 3.51 
Dual-CLBP+CLBP 95.8 2.08 3.06 94.7 3.47 3.84 94.6 3.04 3.54 

 
It is notable that Dual-CLBP + CLBP performs worse than others on Set3 and Set4. The 

reasons may be: 1) After Curvelet transform, an original image is decomposed into sub-bands. 
Low-frequency ones correspond to flat regions, in which the sign of gradient can better 
capture the invariance than magnitudes do. 2) There are correlations between Curvelet 
coefficients. Hence, the M and C components in CLBPs bring redundancy rather than 
improvement. 

 Lower FAR means lower accidental false alarm, which is of great significance for smoke 
classification, and it can reduce the serious consequences of false alarms. Therefore, our 
method is of great practical application value. 

Table 4.  Performance comparisons on GKO and other versions of SVM 
Methods DR(%) FAR(%) ERR(%) Accuracy(%) Time(s) Total SVs 

RBF-SVM with 
GKO 96.7 1.47 2.32 97.67 19.81 

(18.55s GKO+1.26s SVM) 207 

RBF-SVM with 
Grid Search 97.4 3.67 3.19 96.87 214.1 298 

RBF-SVM 
 without GKO 97.8 3.79 3.06 96.94 1.47 244 

 
As shown in Table 4, we employ different parameter optimization methods to demonstrate 

the performance of GKO. We also compare our approach with the grid search, which is 
proposed in [30]. According to the experimental results, grid search method is proved not 
suitable for parameters optimization for different datasets. The GKO algorithm improves the 
accuracy of SVM.  

Although the GKO step is time-consuming, it provides better classification performance 
and shorten the classifying time. Meanwhile, grid search consumes 214.1 seconds. Hence the 
GKO algorithm yields better performance than the grid search one. The computation time and 
the number of support vectors by the GKO algorithm are less than that of grid search on Set2.  

5. Conclusion 
In order to improve the performance of the smoke classification, we present a novel feature 
extraction method termed Dual-LBP, and we combine the proposed Dual-LBP and CLBP to 
improve the discriminative ability of features. The Dual-LBP method first adopts Curvelet 
transform to decompose smoke textures into coarse-to-fine components. Then LBP 
histograms are extracted from the decomposed components, i.e., Curvelet coefficients, to 
generate a histogram map to describe local distributions of coarse-to-fine smoke textures. 
Third, LBP encoding is applied to the histogram map to capture texture distribution relations 
between different frequencies.  
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The advanced feature encoding is explored, which connected Curvelet domains and spatial 
domains. Furthermore, our method discovers the potential relationship between each scale of 
the Curvelet coefficients and improves the smoke classification performances. Extensive 
experiments show that our method achieves improvements in smoke recognition over some 
state-of-the-art methods. 
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