ERROR BOUNDS FOR GAUSS-RADAU AND GAUSS-LOBATTO RULES OF ANALYTIC FUNCTIONS

  • Ko, Kwan-Pyo (Computer Engineering Division of System Engineering Dongseo University)
  • Published : 1997.07.01

Abstract

For analytic functions we give an expression for the kernel $K_n$ of the remainder terms for the Gauss-Radau and the Gauss-Lobatto rules with end points of multiplicity r and prove the convergence of the kernel we obtained. The error bound are obtained for the type $$\mid$R_n(f)$\mid$ \leq \frac{1}{\pi}l(\Gamma) max_{z \in \Gamma} $\mid$K_n(z)$\mid$ max_{z \in \Gamma} $\mid$f(z)$\mid$$, where $l(\Gamma)$ denotes the length of contour $\Gamma$.

Keywords

References

  1. Interpolation and Approximation P. J. Davis
  2. Methods of numerical integration P. J. Davis;P. Rabinowitz
  3. SIAM. J. Numer. Anal. v.27 A note on the contour integral representation of the remainder term for a Gauss-Chebyshev quadrature W. Gautschi;E. Tychopoulos;R. S. Varga
  4. SIAM. J. Numer. Anal. v.20 Error bounds for Gaussian quadrature of analytic functions W. Gautschi;R. S. Varga
  5. Journal of Computational and Applied Mathematics v.33 The remainder term for analytic functions of Gauss-Radau and Gauss Lobatto quadrature rules with multiple end points W. Gautschi;S. Li
  6. Journal of Computational and Applied Mathematics v.34 Gauss-Radau and Gauss Lobatto quadratures with double end points W. Gautschi;S. Li
  7. Appl. Math. Comput. v.42 A Note on the Error in Gaussian Quadrature C. Martin;M. Stamp
  8. Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc. Orthogonal Polynomials G. Szego