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Blind Algorithms with Decision Feedback based on Zero-Error
Probability for Constant Modulus Errors
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ABSTRACT

The constant modulus algorithm (CMA) widely used in blind equalization applications minimizes the averaged
power of constant modulus error (CME) defined as the difference between an instant output power and a
constant modulus. In this paper, a decision feedback version of the linear blind algorithm based on maximization
of the zero-error probability for CME is proposed. The Gaussian kernel of the maximum zero-error criterion is
analyzed to have the property to cut out excessive CMEs that may be induced from severely distorted channel

characteristics. Decision feedback approach to the maximum zero-error criterion for CME is developed based on

the characteristic that the Gaussian kernel suppresses the outliers and this prevents error propagation to some
extent. Compared to the linear algorithm based on maximum zero-error probability for CME in the simulation of

blind equalization environments, the proposed decision feedback version has superior performance enhancement

particularly in cases of severe channel distortions.
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I. Introduction

Blind equalizers are commonly used in many
communication areas to cancel intersymbol
interferences (ISI) from channel distortions because
of the advantage that they do not require any

training symbols'*!

. Most blind equalizer algorithms
use mean-square-error (MSE) criterion for weight-
adjustment. One of the well known blind algorithms
is the constant modulus algorithm (CMA) that
minimizes the statistical average of the power of
constant modulus error (CME), which is defined as
the difference between an instant equalizer output
power and a constant modulus™. Recently, instead
of being based on MSE criterion for blind equalizer
algorithms, a new constant modulus criterion that
maximizes the probability that equalizer output
power is equal to the constant modulus of the
transmitted symbols has been proposed™. The
probability of CME is obtained from CME samples

directly by means of Parzen window estimation
method[s], which is one of the bases of
information-theoretic learning (ITL) introduced by
Princepe’®. The ITL methods have been developed
based on a combination of Parzen probability-
density-function (PDF) estimator and a procedure to
compute entropym and have shown superior
performance as an alternative to MSE in supervised

adaptive systemsm

. For unsupervised equalization,
the researchers in the work [4] have also developed
a new blind algorithm by applying the gradient
ascent method to maximize the criterion of
zero-error probability for CME. The proposed
algorithm has shown a faster speed of convergence
and lower steady-state MSE performance in
comparison with CMA. The blind algorithm,
however, is based on a linear combiner structure so
that it cannot counteract ISI from worse channel
environments. In this paper, in order to cope with

severe channel distortions in blind equalization
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systems, we propose to employ a decision feedback
structure based on the advantages from the criterion
of zero-error probability for constant modulus error.

II. Constant Modulus Error for Blind
Equalization

In the linear equalizer structure of a tapped delay
line (TDL), the output at symbol time k can be
expressed as ¥, = W/X,, where the input vector
and adjustable weight vector are defined as
Xin =[% % 15% 5K vl and W: =[Weos Wors Wezs--- Mina)s
respectively. In the blind equalization algorithm,

CMA, the power of CME e =|y,] - R, is to be
minimized as
Pos = Eleqs 1= By, - R,)?], (1)

where R = E0d,['VE(d,['] and 4, is the transmitted
symbol at time k.

By differentiating Pcys dropping the expectation
operation and using the steepest descent method, we
obtain the following CMA™ for adjusting the blind
equalizer weights:

Wa=W, “zﬂcm'x;,zv Wi '(|Yk|2 -R)) 2

where ucma is the step-size parameter. We can
notice in (2) that CME makes a direct impact on the
weight adjustment, which means that any excessive
CME from severe channel distortions can bring
about a catastrophic failure to the blind equalizer.

Il. Maximum Zero-error Probability
Criterion for Constant Modulus Error

To create a concentration of CME near zero, the
CMA uses MSE criterion. Instead of relying on
MSE criterion, we can deal with an information
theoretic criterion of error probability fz(e). Recently
in [4] a new blind criterion by maximizing the
zero-error probability for constant modulus etror
ecue has introduced as
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To obtain fz( - ) non-parametrically, we need the
Parzen estimator” using Gaussian kernel as follows

1) sﬁfq(x—x,-) @)

=l

The zero-mean Gaussian Kernel Go -) with
standard deviation o is defined as

_ 2
G,(x)= exp[rjz]. Inserting CME into (4)

1
o2rx
and using a block of past output samples
Y, = {ylnyk—l""’yk—Mﬂ}, we have

M-t
Jeleo) = ‘Alz Z G, (ecue - [I)’k-ilz -RD &)

Letting ecur be zero, the probability fi(ecuz)

reduces to

FoCetue), o =37 2 ol - R:D ©

Using a gradient ascent method for the
maximization of the zero-error probability for CME
based on the linear TDL structure, the maximum
zero-error  probability for CME (MZEP-CME)
algorithm™ is derived as

6fE(eCME)I -
W, w= W, +u g T o™ (7)
ket v T Hager-cve oW,
-2 4 2
Wi =Wt thpee o m ; G, (lyk—i| ~R)) ®)

(R, - |yk—i'2) Vi X;c—i,N

where smvzer.cme is the step-size for convergence
control.

We assume that L-ary PAM signaling systems are
employed and the transmitted levels A; takes the
following discrete values

4=2-1-L, 1=12,.,L ©)
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Then the constant modulus R, becomes
R, = E[4' )/ E[ 4] (10)

IV. MZEP-CME Algorithm with Decision
Feedback

The decision feedback equalizer comprises a
feed-forward filter with weight vector W/ and a
feedback filter with weight vector W7 for producing
corresponding decisions d, from input z,. The
feed-forward filter is identical to the TDL which is
adopted in CMA and MZEP-CME algorithm. The
feedback filter receives decisions on previously
detected symbols. The residual ISI from the present
estimate is to be removed by the feedback filter™.

The feed-forward filter weights are the elements
of W =[wiowwlomw,], and feedback filter
weight vector is W’ =[wl i, wlsow’o, ] The
symbol d » is an output of decision device for the
equalizer output y,. The input vector for the
feed-forward filter section is defined as
X“,=[xk,xk-,,xk,z,...,xk-m]r and the previously
detected symbols for feedback section are in the

~ A ~ T
decision vector DH{dk*"d"fl’“"dk-g-Z}. Then the

output can be expressed as

Ve = [WkF]TX;,P + [Wf]yf)lfl (11

The filter weights are adjusted recursively in
order to maximize the zero-error probability
felecamll, =0 according to the gradient ascent
method.

0f(ecis) o =

W, = Wi+ e cue WM;O (12)
6fE(eCME) -

Wi, =W, + Huzep-cue "“WWEO 13)

The gradients are evaluated from

Of (e )l y
L =—Z =G, (v -R,D
aw 5 OW a14)
= O'_Z—M ;Gu (|yk~t|2 —R)(R, - IJ/'/H'RZ) Viei X;Ai,P
afE(eCME)| o 18 9 2
2 == — G, (.| —RD
;’av::_l M < oW 15)
=27 2 O 0 =RIR e[ ) v Bl

where M = P and M = Q.

Now decision feedback MZEP-CME algorithm
(DF-MZEP-CME) can be summarized as

-2 M-
WkFﬂ =W/ + HMoazep-cue M ;Ga (|yk—ilz -R)) 16)
- {.kai |2) “Vi-i” X;#,P

-2 & 2
Wlil = ka + Hagep-cue oM z G, (|yk7i‘ -R,)
oM iz a7

R, _,)’k—zlz) Vi ﬁ/’(~z‘~l

V. The Mitigation Effect on Excessive
CME

In a severe channel distortion environment, most
blind learning algorithms produce frequent large
error signal and ensuing incorrect decisions.
Incorrect decisions can cause error propagation in
decision feedback equalizers. For this reason, in
most blind applications, large error signal makes
using decision feedback impossible. In CMA, the
large CME induced by severe channel distortion can
reduce weight values enough to minimize the power
of CME to some acceptable extent. This can yield
bursts of errors. We can notice the direct impact of
CME on the weight update equation of CMA in (2).

In short, severe channel distortions can induce
large error samples that hinder the application of
decision feedback approach to CMA. Without any
measures of reducing the direct influence of CME
on the weight update equation of CMA, employment
of decision feedback in CMA is considered not a
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Fig. 1. Amplitude spectrum for the channel models

feasible strategy for residual ISI cancellation.

In the case of the proposed algorithm in (16) and
(17), the CME goes through the Gaussian kernel.
We see that the Gaussian kernel G,(y..|'-R,)
produces an exponential decay with the distance
between the instant output power and the constant
modulus R;. For proposed algorithm in severe
channel conditions, therefore, the excessively large
|y,f,,-|2 —R, induced by the channel condition becomes
a very small value through the Gaussian kernels in
the feedforward and feedback filter weight updates.

So we can remark that the Gaussian kernel
G, (lyk_,-lz —R,) plays a role of reducing the impact of
excessive  CME on the update equations for
feedforward and feedback section weights. This
inherent immunity to excessive CME from severe
channel distortions, that is, the immunity to error
propagation has provided us with the ground for
employing the decision feedback structure to
MZEP-CME algorithm.

VI. Simulation results and discussion

In this section, the comparative performance of
the linear MZEP-CME and the proposed
DF-MZEP-CME algorithms in blind equalization is
presented for three linear channels, and simulation
results are discussed. The 4 level (L =4) random
signal is transmitted to the channel and the transfer
functions H(z) for each channel model'® are
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CHI1: H(z)=026+093z"+0.26z7 (18)
CH2: H(z)=0.304+0.903z +0.304z7 (19)
CH3: H(z)=0.407+0.815z7 +0.4072> (20)

The number of weights is N=11 in the linear TDL
equalizer structure. The number of feed-forward and
feedback section weights is F=7 and B=4,
respectively. The channel noise (AWGN) variance is
0.001. As a measure of equalizer performance, we
use MSE learning curves and probability densities
for errors of the difference between the actual
transmitted symbol and the output for linear
MZEP-CME and the proposed DF-MZEP-CME. The
data-block size and the kernel size are M =20 and
o =6, respectively. The step size for controlling
convergence conditions is commonly set to
tvzep-cme =0.02 for both algorithms.

In the results for CH1 and CH2 of comparatively
moderate channel conditions as shown in Fig.2 to
5, we observe that the performance gain in steady
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Fig. 2. MSE convergence performance in CHI
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Fig. 3. Probability density for errors in CH1
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Fig. 4. MSE convergence performance in CH2
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Fig. 5. Probability density for errors in CH2

state MSE is almost the same in CH1 and slight in
CH2.

However, DF-MZEP-CME shows increased
convergence speed in both channels. In probability
density comparisons for output error shown in Fig.
3 and 5, the decision feedback approach gives error
values better concentration to zero in worse channel
models though not significant enhancement.

These results give us the motivation to investigate
performance differences related to CME and
decision feedback in much worse channel conditions
than the moderate channel models of CH1 and CH2.

The MSE convergence results acquired in the
worst channel model CH3 according to this
motivation are shown in Fig. 6 (the step size in this
channel model CH3 is 0.06 for both algorithms).

The learning curve for the linear MZEP-CME
algorithm stays at almost the same MSE of -6 dB,
but that of the proposed DF-MZEP-CME algorithm
goes steeply down to even -14 dB as weight
adjustment is proceeded. The difference of steady
state MSE is over 8 dB. As analyzed in the section
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Fig. 6. MSE convergence performance in CH3
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Fig. 7. Probability density for errors in CH3

of V and seen in Fig. 6, we can notice the
mitigation effect conspicuously on excessive CME

from the severe channel model. We can conclude

that the Gaussian kemel G,(y..|'-R,) plays an
important role of cutting out large CMEs in severe
ISI channel conditions so that the employment of
decision feedback approach can yield significant
performance enhancement.

VI. Conclusion

In this paper, in order to cope with severe
channel distortions in blind equalization systems, a
decision feedback algorithm based on zero-error
probability for constant modulus error has been
presented. The proposed algorithm employing
decision feedback and Gaussian kernel to deal with
constant modulus errors has shown superior
performance particularly in severe channel models.

From the observations of the steady state MSE
and error distribution and the analysis of the
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proposed algorithm, we have come to the conclusion
that the proposed blind equalizer algorithm with
decision feedback can be appropriate for the
compensation of severe channel distortions.

The inherent characteristics of the proposed
algorithm are that the Gaussian kernel of the
proposed decision feedback algorithm plays a role of
mitigating the impact of large constant modulus
errors on system weight adjustment, so that the
employed decision feedback structure which is
vulnerable to error propagation can carry out the
residual ISI cancellation effectively.
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