• 제목/요약/키워드: Gauss-Newton full-waveform inversion

검색결과 5건 처리시간 0.016초

시간영역 Gauss-Newton 전체파형 역해석 기법의 성능평가 (Performance Evaluation of a Time-domain Gauss-Newton Full-waveform Inversion Method)

  • 강준원
    • 한국전산구조공학회논문집
    • /
    • 제26권4호
    • /
    • pp.223-231
    • /
    • 2013
  • 본 논문에서는 물성이 균일하지 않은 반무한 고체영역의 탄성파속도 분포를 재구성하기 위한 시간영역 Gauss-Newton 전체파형 역해석 기법을 소개한다. 반무한 영역을 유한 계산영역으로 치환하기 위하여 유한영역의 경계에 수치적 파동흡수 경계조건인 perfectly-matched-layers(PMLs)를 도입하였다. 이 역해석 문제는 PML을 경계로 하는 영역에서의 탄성파동방정식을 구속조건으로 하는 최적화 문제로 성립되며, 표면에서 측정된 변위응답과 혼합유한요소법에 의해 계산된 응답간의 차이를 최소화함으로써 미지의 탄성파속도 분포를 결정한다. 이 과정에서 Gauss-Newton-Krylov 최적화 알고리즘과 정규화기법을 사용하여 탄성파속도의 분포를 반복적으로 업데이트하였다. 1차원 수치예제들을 통해 Gauss-Newton 역해석으로 부터 재구성된 탄성파속도의 분포가 목표값에 충분히 근사함을 보였으며, Fletcher Reeves 최적화 알고리즘을 사용한 기존의 역해석 결과에 비해 수렴율이 현저히 개선되고 계산 소요시간이 단축됨을 확인할 수 있었다.

Gauss-Newton 방법에서의 유사 Hessian 행렬의 구축과 이를 이용한 파형역산 (Construction the pseudo-Hessian matrix in Gauss-Newton Method and Seismic Waveform Inversion)

  • 하태영
    • 지구물리와물리탐사
    • /
    • 제7권3호
    • /
    • pp.191-196
    • /
    • 2004
  • 탄성파 역산에는 고전적인 Gauss-Newton 방법이 주로 사용된다. 이 방법은 Jacobian을 직접 계산하여 거대한 크기의 Hessian 행렬을 만드는 것을 필요로 한다. Hessian 행렬의 구성은 몇 가지의 요소들에 의해 결정되는데, 음원과 수진기의 위치, 영상화 구역(image zone), 음원 파형의 형태 등 다양한 형태의 모델링에 영향을 미치는 요소에 따라서 다른 모습으로 나타난다. 이 논문에서는 Gauss-Newton 방법에 나타나는 거대한 Hessian 행렬을 조절함으로써 Marmousi 탄성파 모델 자료를 역산하고자 한다. 또한 근사 Hessian행렬의 대안으로 두 가지의 유사 Hessian행렬들을 제시하고자 한다. 하나는 유한 폭을 갖는 Hessian행렬이고 다른 하나는 자동안정함수(automatic gain function, AGC)를 이용한 Hessian 행렬이다. 작은 크기의 모델에 대한 수치결과로부터 몇 가지의 사실을 알 수 있다. 하나는 유한 폭을 갖는 Hessian 행렬을 이용하여 얻어진 한번 근사된 속도모델은 원래의 Hessian 행렬을 이용하여 얻은 결과와 매우 유사하다는 것이고, 둘째로 자동안정함수를 이용한 근사 Hessian 행렬의 안정성이 많이 개선된다는 것이다.

향상된 슈도-헤시안 행렬을 이용한 탄성파 완전 파형역산 (Frequency domain elastic full waveform inversion using the new pseudo-Hessian matrix: elastic Marmousi-2 synthetic test)

  • 최윤석;신창수;민동주
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.329-336
    • /
    • 2007
  • For scaling of the gradient of misfit function, we develop a new pseudo-Hessian matrix constructed by combining amplitude field and pseudo-Hessian matrix. Since pseudo- Hessian matrix neglects the calculation of the zero-lag auto-correlation of impulse responses in the approximate Hessian matrix, the pseudo-Hessian matrix has a limitation to scale the gradient of misfit function compared to the approximate Hessian matrix. To validate the new pseudo- Hessian matrix, we perform frequency-domain elastic full waveform inversion using this Hessian matrix. By synthetic experiments, we show that the new pseudo-Hessian matrix can give better convergence to the true model than the old one does. Furthermore, since the amplitude fields are intrinsically obtained in forward modeling procedure, we do not have to pay any extra cost to compute the new pseudo-Hessian. We think that the new pseudo-Hessian matrix can be used as an alternative of the approximate Hessian matrix of the Gauss-Newton method.

  • PDF

Depth Scaling Strategy Using a Flexible Damping Factor forFrequency-Domain Elastic Full Waveform Inversion

  • Oh, Ju-Won;Kim, Shin-Woong;Min, Dong-Joo;Moon, Seok-Joon;Hwang, Jong-Ha
    • 한국지구과학회지
    • /
    • 제37권5호
    • /
    • pp.277-285
    • /
    • 2016
  • We introduce a depth scaling strategy to improve the accuracy of frequency-domain elastic full waveform inversion (FWI) using the new pseudo-Hessian matrix for seismic data without low-frequency components. The depth scaling strategy is based on the fact that the damping factor in the Levenberg-Marquardt method controls the energy concentration in the gradient. In other words, a large damping factor makes the Levenberg-Marquardt method similar to the steepest-descent method, by which shallow structures are mainly recovered. With a small damping factor, the Levenberg-Marquardt method becomes similar to the Gauss-Newton methods by which we can resolve deep structures as well as shallow structures. In our depth scaling strategy, a large damping factor is used in the early stage and then decreases automatically with the trend of error as the iteration goes on. With the depth scaling strategy, we can gradually move the parameter-searching region from shallow to deep parts. This flexible damping factor plays a role in retarding the model parameter update for shallow parts and mainly inverting deeper parts in the later stage of inversion. By doing so, we can improve deep parts in inversion results. The depth scaling strategy is applied to synthetic data without lowfrequency components for a modified version of the SEG/EAGE overthrust model. Numerical examples show that the flexible damping factor yields better results than the constant damping factor when reliable low-frequency components are missing.