• Title/Summary/Keyword: Gate Dielectric Film

Search Result 253, Processing Time 0.037 seconds

Development of Organic-Inorganic Hybrid Dielectric for Organic Thin Film Transistors

  • Jeong, Sun-Ho;Kim, Dong-Jo;Lee, Sul;Park, Bong-Kyun;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1115-1118
    • /
    • 2006
  • Using a thermally-crosslinkable organosiloxane-based organic-inorganic hybrid material, solution processable gate dielectric layer for organic thin-film transistors (OTFTs) have been fabricated. The hybrid dielectrics are synthesized by the sol-gel process, followed by the heat-treatment at $190{\bullet}\;.{\bullet}$ To investigate the electrical property of hybrid dielectric, leakage current behavior and capacitance were measured. To fabricate coplanar-type OTFTs, Au/Cr electrode was deposited onto the heavily doped silicon substrate with the organic-inorganic hybrid dielectric layer and then ${\alpha},{\omega}-dihexylquaterthiophene$ was drop-cast between source and drain electrical performance of the fabricated transistor.

  • PDF

Device characterization and Fabrication Issues for Ferroelectric Gate Field Effect Transistor Device

  • Yu, Byoung-Gon;You, In-Kyu;Lee, Won-Jae;Ryu, Sang-Ouk;Kim, Kwi-Dong;Yoon, Sung-Min;Cho, Seong-Mok;Lee, Nam-Yeal;Shin, Woong-Chul
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.213-225
    • /
    • 2002
  • Metal-Ferroelectric- Insulator- Silicon (MFIS) structured field effect transistor (FET) device was fabricated and characterized. Important issues to realize ferroelectric gate field effect transistor device were summarized in three sections. The choice of interlayer dielectric was made in the consideration of device functionality and chemical reaction between ferroelectric materials and silicon surface during fabrication process. Also, various ferroelectric thin film materials were taken into account to meet desired memory window and process compatibility. Finally, MFIS structured FET device was fabricated and important characteristics were discussed. For feasible integration of current device as random access memory array cell address schemes were also suggested.

Device Degradation with Gate Lengths and Gate Widths in InGaZnO Thin Film Transistors (게이트 길이와 게이트 폭에 따른 InGaZnO 박막 트랜지스터의 소자 특성 저하)

  • Lee, Jae-Ki;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1266-1272
    • /
    • 2012
  • An InGaZnO thin film transistor with different gate lengths and widths have been fabricated and their device degradations with device sizes have been also performed after negative gate bias stress. The threshold voltage and subthreshold swing have been decreased with decrease of gate length. However, the threshold voltages were increased with the decrease of gate lengths. The transfer curves were negatively shifted after negative gate stress and the threshold voltage was decreased. However, the subthreshold swing was not changed after negative gate stress. This is due to the hole trapping in the gate dielectric materials. The decreases of the threshold voltage variation with the decrease of gate length and the increase of gate width were believed due to the less hole injection into gate dielectrics after a negative gate stress.

Characteristics of Ferroelectric Transistors with $BaMgF_4$ Dielectric

  • Lyu, Jong-Son;Jeong, Jin-Woo;Kim, Kwang-Ho;Kim, Bo-Woo;Yoo, Hyung-Joun
    • ETRI Journal
    • /
    • v.20 no.2
    • /
    • pp.241-249
    • /
    • 1998
  • The structure and electrical characteristics of metal-ferroelectric-semiconductor FET(MFSFET) for a single transistor memory are presented. The MFSFET was comprised of polysilicon islands as source/drain electrodes and $BaMgF_4$ film as a gate dielectric. The polysilicon source and drain were built-up prior to the formation of the ferroelectric film to suppress a degradation of the film due to high thermal cycles. From the MFS capacitor, the remnant polarization and coercive field were measured to be about $0.6{\mu}C/cm^2$ and 100 kV/cm, respectively. The fabricated MFSFETs also showed good hysteretic I-V curves, while the current levels disperse probably due to film cracking or bad adhesion between the film and the Al electrode.

  • PDF

Temperature dependance of Leakage Current of Nitrided, Reoxided MOS devices (질화, 재산화시진 모스 절연막의 온도 변화에 따른 누설전류의 변화)

  • 이정석;장창덕;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.71-74
    • /
    • 1998
  • In this Paper, we investigate the electrical properties of ultra-thin(70${\AA}$) nitrided(NO) and reoxidized nitrided oxide(ONO) film that ale considered to be premising candidates for replacing conventional silicon dioxide film in ULSI level integration. we studied I$\sub$g/-V$\sub$g/ characteristics to know the effect of nitridation and reoxidation on the current conduction, leakage current time-dependent dielectric breakdown(TDDB) to evaluate charge-to-breakdown(Q$\sub$bd/), and the effect of stress temperature(25, 50, 75, 100$^{\circ}C$) and compared to those with thermal gate oxide(SiO$_2$) of identical thickness. From the measurement results, we find that reoxidized nitrided oxide(ONO) film shows superior dielectric characteristics, leakage current, and breakdown-to-charge(Qbd) performance over the NO film, while maintaining a similar electric field dependence compared to NO layer. Besides, ONO film has strong resistance against variation in temperature.

  • PDF

Impact of gate protection silicon nitride film on the sub-quarter micron transistor performances in dynamic random access memory devices

  • Choy, J.-H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.47-49
    • /
    • 2004
  • Gate protection $SiN_x$ as an alternative to a conventional re-oxidation process in Dynamic Random Access Memory devices is investigated. This process can not only protect the gate electrode tungsten against oxidation, but also save the thermal budget due to the re-oxidation. The protection $SiN_x$ process is applied to the poly-Si gate, and its device performance is measured and compared with the re-oxidation processed poly-Si gate. The results on the gate dielectric integrity show that etch damage-curing capability of protection $SiN_x$ is comparable to the re-oxidation process. In addition, the hot carrier immunity of the $SiN_x$ deposited gate is superior to that of re-oxidation processed gate.

Organic-Inorganic Nanohybrid Structure for Flexible Nonvolatile Memory Thin-Film Transistor

  • Yun, Gwan-Hyeok;Kalode, Pranav;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.118-118
    • /
    • 2011
  • The Nano-Floating Gate Memory(NFGM) devices with ZnO:Cu thin film embedded in Al2O3 and AlOx-SAOL were fabricated and the electrical characteristics were evaluated. To further improve the scaling and to increase the program/erase speed, the high-k dielectric with a large barrier height such as Al2O3 can also act alternatively as a blocking layer for high-speed flash memory device application. The Al2O3 layer and AlOx-SAOL were deposited by MLD system and ZnO:Cu films were deposited by ALD system. The tunneling layer which is consisted of AlOx-SAOL were sequentially deposited at $100^{\circ}C$. The floating gate is consisted of ZnO films, which are doped with copper. The floating gate of ZnO:Cu films was used for charge trap. The same as tunneling layer, floating gate were sequentially deposited at $100^{\circ}C$. By using ALD process, we could control the proportion of Cu doping in charge trap layer and observe the memory characteristic of Cu doping ratio. Also, we could control and observe the memory property which is followed by tunneling layer thickness. The thickness of ZnO:Cu films was measured by Transmission Electron Microscopy. XPS analysis was performed to determine the composition of the ZnO:Cu film deposited by ALD process. A significant threshold voltage shift of fabricated floating gate memory devices was obtained due to the charging effects of ZnO:Cu films and the memory windows was about 13V. The feasibility of ZnO:Cu films deposited between Al2O3 and AlOx-SAOL for NFGM device application was also showed. We applied our ZnO:Cu memory to thin film transistor and evaluate the electrical property. The structure of our memory thin film transistor is consisted of all organic-inorganic hybrid structure. Then, we expect that our film could be applied to high-performance flexible device.----못찾겠음......

  • PDF

Effects of Interfacial Dielectric Layers on the Electrical Performance of Top-Gate In-Ga-Zn-Oxide Thin-Film Transistors

  • Cheong, Woo-Seok;Lee, Jeong-Min;Lee, Jong-Ho;KoPark, Sang-Hee;Yoon, Sung-Min;Byun, Chun-Won;Yang, Shin-Hyuk;Chung, Sung-Mook;Cho, Kyoung-Ik;Hwang, Chi-Sun
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.660-666
    • /
    • 2009
  • We investigate the effects of interfacial dielectric layers (IDLs) on the electrical properties of top-gate In-Ga-Zn-oxide (IGZO) thin film transistors (TFTs) fabricated at low temperatures below $200^{\circ}C$, using a target composition of In:Ga:Zn = 2:1:2 (atomic ratio). Using four types of TFT structures combined with such dielectric materials as $Si_3N_4$ and $Al_2O_3$, the electrical properties are analyzed. After post-annealing at $200^{\circ}C$ for 1 hour in an $O_2$ ambient, the sub-threshold swing is improved in all TFT types, which indicates a reduction of the interfacial trap sites. During negative-bias stress tests on TFTs with a $Si_3N_4$ IDL, the degradation sources are closely related to unstable bond states, such as Si-based broken bonds and hydrogen-based bonds. From constant-current stress tests of $I_d$ = 3 ${\mu}A$, an IGZO-TFT with heat-treated $Si_3N_4$ IDL shows a good stability performance, which is attributed to the compensation effect of the original charge-injection and electron-trapping behavior.

Improvement of Thin-Gate Oxide using Nitridation and Reoxidation (질화와 재산화를 이용한 얇은 게이트 산화막의 질적 향상)

  • 이정석;장창덕;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.1-4
    • /
    • 1998
  • In this paper, we have studied a variation of I-V characteristics, and time-dependent dielectric breakdown(TDDB) of thin layer NO and ONO film depending on nitridation and reoxidation time, respectively, and measured a variation of leakage current and charge-to-breakdown(Q$\_$bd/) of optimized NO and ONO film depending on ambient temperature, and then compared with the properties of conventional SiO$_2$. From the results, we find that these NO and ONO thin films are strongly influenced by process time and the optimized ONO film shows superior dielectric characteristics, and Q$\_$bd/ performance over the NO film and SiO$_2$, while maintaining a similar electric field dependence compared with NO layer.

  • PDF

Reliability Analysis for Deuterium Incorporated Gate Oxide Film through Negative-bias Temperature Instability and Hot-carrier Injection (Negative-bias Temperature Instability 및 Hot-carrier Injection을 통한 중수소 주입된 게이트 산화막의 신뢰성 분석)

  • Lee, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.687-694
    • /
    • 2008
  • This paper is focused on the improvement of MOS device reliability related to deuterium process. The injection of deuterium into the gate oxide film was achieved through two kind of method, high-pressure annealing and low-energy implantation at the back-end of line, for the purpose of the passivation of dangling bonds at $SiO_2/Si$ interface. Experimental results are presented for the degradation of 3-nm-thick gate oxide ($SiO_2$) under both negative-bias temperature instability (NBTI) and hot-carrier injection (HCI) stresses using P and NMOSFETs. Annealing process was rather difficult to control the concentration of deuterium. Because when the concentration of deuterium is redundant in gate oxide excess traps are generated and degrades the performance, we found annealing process did not show the improved characteristics in device reliability, compared to conventional process. However, deuterium ion implantation at the back-end process was effective method for the fabrication of the deuterated gate oxide. Device parameter variations under the electrical stresses depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to conventional process. Our result suggests the novel method to incorporate deuterium in the MOS structure for the reliability.