Device characterization and Fabrication Issues for Ferroelectric Gate Field Effect Transistor Device

  • Yu, Byoung-Gon (Basic Research Lab., Electronics and Telecommunications Research Institute(ETRI)) ;
  • You, In-Kyu (Basic Research Lab., Electronics and Telecommunications Research Institute(ETRI)) ;
  • Lee, Won-Jae (Research Center of Electronic Ceramics(RCEC), Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Ryu, Sang-Ouk (Basic Research Lab., Electronics and Telecommunications Research Institute(ETRI)) ;
  • Kim, Kwi-Dong (Basic Research Lab., Electronics and Telecommunications Research Institute(ETRI)) ;
  • Yoon, Sung-Min (Basic Research Lab., Electronics and Telecommunications Research Institute(ETRI)) ;
  • Cho, Seong-Mok (Basic Research Lab., Electronics and Telecommunications Research Institute(ETRI)) ;
  • Lee, Nam-Yeal (Basic Research Lab., Electronics and Telecommunications Research Institute(ETRI)) ;
  • Shin, Woong-Chul (Basic Research Lab., Electronics and Telecommunications Research Institute(ETRI))
  • Published : 2002.09.01

Abstract

Metal-Ferroelectric- Insulator- Silicon (MFIS) structured field effect transistor (FET) device was fabricated and characterized. Important issues to realize ferroelectric gate field effect transistor device were summarized in three sections. The choice of interlayer dielectric was made in the consideration of device functionality and chemical reaction between ferroelectric materials and silicon surface during fabrication process. Also, various ferroelectric thin film materials were taken into account to meet desired memory window and process compatibility. Finally, MFIS structured FET device was fabricated and important characteristics were discussed. For feasible integration of current device as random access memory array cell address schemes were also suggested.

Keywords

References

  1. H. B. Kang, D. Y. Jeong, J. H. Lim, S. H. Oh, S. S. Lee, S. K. Hong, S. S. Kim, Y. J. Park and J. Y. Chung, Journal of semiconductor technology and science, 2(2), 111, 2002
  2. M. K. Choi, B. G. Jeon, N. Jang, B. J. Min, Y. J. Song, S. Y. Lee, H. H. Kim, D. J. Jung, H. J. Joo, and K. Kim, ISSCC Dig. Tech. Papers, pp. 162-163, 2002
  3. H. Ishiwara, Journal of semiconductor technology and science, 1(1), 1, 2001
  4. S. Y. Wu, IEEE Trans. Electron Devices, 21, 499, 1974
  5. Y. Matsui, M. Okuyama, M. Noda, and Y. Hamakawa, Appl. Phys. A, 28, 161, 1982
  6. P. Han, and T. P. Ma, Appl. Phys. Lett. 72, 1185, 1998 https://doi.org/10.1063/1.121008
  7. Sakasi, E. Tokumitu, and H. Ishiwara, Jpn. J. Appl. Phys. 35, 4987, 1996 https://doi.org/10.1143/JJAP.35.4987
  8. T. Hirai, Y. Fujisaki, K. Nagashima, H. Koike, and Y. Tarui, Jpn. J. Appl. Phys. 36, 5908, 1997 https://doi.org/10.1143/JJAP.36.5908
  9. H. N. Lee, M. H. Lim, Y. T. Kim, T. S. Kalkur, and S. H. Choh, Jpn. J. Appl, Phys. 37, 1107, 1998
  10. K. H. Kim, J. D. Kim, and H. Ishiwara, Appl. Phys. Lett., 66(23), 3143, 1995
  11. B. Yang, S. S. Lee, Y. M. Kang, K. H. Noh, S. K. Hong, S. H. Oh, E. Y. Kang, S. W. Lee, J. G. Kim, C. W. Shu, J. Y. Seong, C. G. Lee, N. S. Kang, and Y. J. Park, Journal of semiconductor technology and science, 1 (3), 141, 2001
  12. S. L .Miller, and P. J. McWhorter, J. Appl. Phys., 72, 5999, 1992 https://doi.org/10.1063/1.351910
  13. E. H. Nicollian, and J. R. Brews, MOS(Metal Oxide Semiconductor) Physics and Technology (John Wiley & Sons, New York), pp. 319, 1982
  14. T. Miki et al., IEEE J. Solid-State Circuits, vol SC-21, pp. 983, 1986
  15. K.H. Ryu and K.S. Yoon Proceedings of ITC-CSCC '98, pp. 1439, 1988