• 제목/요약/키워드: Gases Concentrations

Search Result 284, Processing Time 0.027 seconds

Simultaneous Removal of $NO_x$ and $SO_2$ through the Combination of Sodium Chlorite Powder and Carbon-based Catalyst at Low Temperature ($NaClO_2(s)$와 탄소 분산형 촉매를 이용한 저온에서의 $NO_x$$SO_2$ 동시 제거)

  • Byun, Young-Chul;Lee, Ki-Man;Koh, Dong-Jun;Shin, Dong-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • NO oxidation is an important prerequisite step to assist the selective catalytic reduction (SCR) at low temperatures ($<200^{\circ}C$). Therefore, we conducted the lab- and bench-scales experiments appling the sodium chlorite powder ($NaClO_2(s)$) for the oxidation of NO to $NO_2$ and the carbon-based catalyst for the reduction of $NO_x$ and $SO_2$; the lab- and bench-scales experiments were conducted in laboratory and iron-ore sintering plant, respectively. In the lab-scale experiment, known concentrations of $NO_x$ (200 ppm), $SO_2$ (75 ppm), $H_2O$ (10%) and $NH_3$ (400 ppm) in 2.6 L/min were introduced into a packed-bed reactor containing $NaClO_2(s)$, then gases produced by the reaction with $NaClO_2(s)$ were fed into the carbon-based catalyst (space velocity = $2,000hr^{-1}$) at $130^{\circ}C$. In the bench-scale experiment, flue gases of $50Nm^3/hr$ containing 120 ppm NO and 150 ppm $SO_2$ were taken out from the duct of iron-ore sintering plant, then introduced into the flow reactor; $NaClO_2(s)$ were injected into the flow reactor using a screw feeder. Gases produced by the reaction with $NaClO_2(s)$ were introduced into the carbon-based catalyst (space velocity = $1,000hr^{-1}$). Results have shown that, in both lab- and bench-scales experiments, NO was oxidized to $NO_2$ by $NaClO_2(s)$. In addition, above 90% of $NO_x$ and $SO_2$ removal were obtained at the carbon-based catalyst. These results lead us to suggest that the combination of $NaClO_2(s)$ with the carbon-based catalyst has the potential to achieve the simultaneous removal of $NO_x$ and $SO_2$ at low temperature ($<200^{\circ}C$).

Effect of Aeration Rates on Emissions of Oxygen and Sulfur compound gases during Composting of Dairy Manure (우분(牛糞) 퇴비화시(堆肥花時) 공기주입률(空氣注入率)이 산소 및 황화합물 가스 배출(排出)에 미치는 영향(影響))

  • Kang, Hang-Won;Zhang, Ruihong;Rhee, In-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.472-481
    • /
    • 2000
  • This experiment used the enclosed bench-scale reactors was conducted to find out optimal aeration rate for reducing the emission of odors and producing the good-quality compost with the mixture of dairy manure and rice straw. The reactors with gas sampler were aerated at four different rates of 0.09, 0.18, 0.90 and $1.79l\;min^{-1}kg^{-1}$dry solids for 574 hours. The oxygen content within composting pile instantly decreased after aeration. Oxygen limitation(below 15%) in the treatments of $0.90l\;min^{-1}kg^{-1}$ and less was exponentially negative relationship with aeration rates and in the range of 35 to 300 hours after aeration. However, the treatment of $1.79l\;min^{-1}kg^{-1}$ didn't show the oxygen limitation. The oxygen consumption rate and the cumulative amount of oxygen consumed by different aeration rates was ranged in $0.80{\sim}1.57O_2g\;h^{-1}\;kg^{-1}VS^{-1}$, $460{\sim}900O_2g\;kg^{-1}VS^{-1}$, respectively, and they were high in the order of 0.90, 1.79, 0.18, $0.09l\;min^{-1}kg^{-1}$. The maximum oxygen consumption rate was estimated in the range of $1.2{\sim}1.3lmin^{-1}kg^{-1}$. The emission concentrations of sulfur compounds such as hydrogen sulfide, sulfur dioxide and methylmercaptan were remarkably high in the initial composting time. Then they were rapidly decreased with the passing of composting time and clearly with increasing aeration rates. Their average concentrations were in the range of 0.03~2.18, 0~0.50, $0.07{\sim}3.38mg\;kg^{-1}$, respectively and high in the order of methylmercaptan, hydrogen sulfide, and sulfur dioxide. Concentrations of sulfur compounds emitted from composting showed exponentially negative relationship at 1% statistically with the oxygen concentration. It was estimated that hydrogen sulfide and methylmercaptan suddenly increased in the level of 5% oxygen concentration and below, that they were little emitted in 15% and over but sulfur dioxide was emitted in the level of 20% oxygen.

  • PDF

Evaluation of CH4 Flux for Continuous Observation from Intertidal Flat Sediments in the Eoeun-ri, Taean-gun on the Mid-western Coast of Korea (서해안 태안 어은리 갯벌의 연속관측 메탄(CH4) 플럭스 특성 평가)

  • Lee, Jun-Ho;Rho, Kyoung Chan;Woo, Han Jun;Kang, Jeongwon;Jeong, Kap-Sik;Jang, Seok
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.147-160
    • /
    • 2015
  • In 2014, on 31 August and 1 September, the emissions of $CH_4$, $CO_2$, and $O_2$ gases were measured six times using the closed chamber method from exposed tidal flat sediments in the same position relative to the low point of the tidal cycle in the Eoeun-ri, Taean-gun, on the Mid-western Coast of Korea. The concentrations of $CH_4$ in the air sample collected in the chamber were measured using gas chromatography with an EG analyzer, model GS-23, within 6 hours of collection, and the other gases were measured in real time using a multi-gas monitor. The gas emission fluxes (source (+), and sink (-)) were calculated from a simple linear regression analysis of the changes in the concentrations over time. In order to see the surrounding parameters (water content, temperature, total organic carbon, average mean size of sediments, and the temperature of the inner chamber) were measured at the study site. On the first day, across three measurements during 5 hours 20 minutes, the observed $CO_2$ flux absorption was -137.00 to $-81.73mg/m^2/hr$, and the $O_2$ absorption, measured simultaneously, was -0.03 to $0.00mg/m^2/hr$. On the second day using an identical number of measurements, the $CO_2$ absorption was -20.43 to $-2.11mg/m^2/hr$, and the $O_2$ absorption -0.18 to $-0.14mg/m^2/hr$. The $CH_4$ absorption before low tide was $-0.02mg/m^2/hr$ (first day, Pearson correlation coefficient using the SPSS statistical analysis is -0.555(n=5, p=0.332, pronounced negative linear relationship)), and $-0.15mg/m^2/hr$ (second day, -0.915(n=5, p=0.030, strong negative linear relationship)) on both measurement days. The emitted flux after low tide on both measurement days reached a minimum of $+0.00mg/m^2/hr$ (+0.713(n=5, p=0.176, linear relationship which can be almost ignored)), and a maximum of $+0.03mg/m^2/hr$ (+0.194(n=5, p=0.754, weak positive linear relationship)) after low tide. However, the absolute values of the $CH_4$ fluxes were analyzed at different times. These results suggest that rate for $CH_4$ fluxes, even the same time and area, were influenced by changes in the tidal cycle characteristics of surface sediments for understanding their correlation with these gas emissions, and surrounding parameters such as physiochemical sediments conditions.

Hydrogeochemistry and Origin of $CO_2$ and Noble Gases in the Dalki Carbonate Waters of the Chungsong Area (청송 달기탄산약수의 수리지화학과 탄산 및 영족기체 기원)

  • Jeong, Chan-Ho;Kim, Kyu-Han;Nagao, Keisuke
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.123-134
    • /
    • 2012
  • Hydrochemical analyses, carbon isotopic (${\delta}^{13}C_{DIC}$) analyses, and noble gas isotopic ($^3He/^4He$ and $^4He/^{20}Ne$) analyses of the Dalki carbonate waters in the Chungsong area were carried out to elucidate their hydrochemical composition and to determine the source of $CO_2$ gas and noble gases. The carbonate waters have a pH of between 5.93 and 6.33, and an electrical conductivity 1950 to $3030{\mu}S/cm$. The chemical composition of all carbonate waters was Ca(Mg)-$HCO_3$, with a high Na content. The contents of Fe, Mn, and As in some carbonate waters exceed the limit stipulated for drinking water. The concentrations of major ions are slightly higher than those reported previously. The ${\delta}^{13}C_{DIC}$ values range from -6.70‰ to -4.47‰, indicating that the carbon originated from a deep-seated source. The $^3He/^4He$ and $^4He/^{20}Ne$ ratios vary from $7.67{\times}10^{-6}$ to $8.38{\times}10^{-6}$ and from 21.32 to 725.7, respectively. On the $^3He/^4He$ versus $^4He/^{20}Ne$ diagram, the noble gas isotope ratios plot in the field of a deep-seated source, such as mantle or magma. We therefore conclude that $CO_2$ gas and noble gas in the Dalki carbonate waters originated from a deep-seated source, rather than an inorganic $CO_2$ origin as suggested in a previous study.

Effects of the Odor Abatement System in a Naturally Ventilated Growing Finishing Pig House (자연환기식 육성.비육돈사의 악취탈취장치 적용효과)

  • Lee, S.H.;Yun, N.K.;Kim, K.W.;Yum, S.H.;Cho, Y.H.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • Ammonia gas is one of the malodorous gases from swine production facilities, such as manure storage tank, manure fermentation facilities, and livestock houses, etc. Ammonia gas from swine house is being emitted at relatively low concentrations throughout the year. Therefore, livestock facilities were continuously ventilated to supply fresh air for respiration of the animals internal the livestock facilities. The swine facilities need very high ventilation rate to control the inside environmental conditions. The deodorization system of the livestock facilities must be developed considering the ventilation rates. The odor abatement system was installed in order to improve the internal environment of the naturally ventilated growing-finishing pig house. The system which distributes the deodorized air into inner space of the swine house by using plastic duct was installed. Since the internal environment, effected by the operation of the odor abatement system, is monitored by closing the winch curtain installed on the side wall of the pig house, the experiment was practiced at the season when the internal environment becomes aggravated, winter. The effects on the improvement in the internal environment of swine house by operating the odor abatement system are as follows ; 1. By re-distributing the air which was deodorized by the odor abatement system installed in the pig house, the result showed that the concentration of ammonia gas is decreased approximately 33.3% compared with that before operating odor abatement system. 2. The effect on the pig house's ammonia gas reduction was found that the ventilation rate was less than $0.5m^3$/min head. The effect of the operation of the odor abatement system showed to be scarce when the ventilation rate increases because of the influx of external fresh air makes the quantity of diluted air more than those of the odor abatement system. 3. The perishment rate of the pigs which were brooded until slaughtering decreased about 3.8% by operating the odor abatement system in the growing-finishing pig house. Also, after operating the odor abatement system, the stinging of the eyes, suspension dust, etc were decreased when going into swine house for management.

  • PDF

Comparison of Atmospheric Carbon Dioxide Concentration Trend and Accuracy from GOSAT and AIRS data over the Korean Peninsula (한반도 지역에서의 이산화탄소 변화 경향과 AIRS, GOSAT 위성 자료의 정확도 비교)

  • Lee, Sanghee;Kim, Jhoon;Cho, Hi-Ku;Goo, Tae-Young;Ou, Mi-Lim;Lee, Jong-Ho;Yokota, Tatsuya
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2015
  • With the global scale impact of atmospheric $CO_2$ in global warming and climate system, it is necessary to monitor the $CO_2$ concentration continuously on a global scale, where satellite remote sensing has played a significant role recently. In this study, global monthly $CO_2$ concentrations obtained by satellite remote sensing were compared with ground-based measurements at Anmyeon-do and Gosan Korean Global Atmosphere Watch Center. Atmospheric $CO_2$ concentration has increased from 371.87 ppm in January 1999 to 405.50 ppm in December 2013 at Anmyeon-do station (KMA, 2013). Comparison of the continuous measurements by flask air sampling at Anmyeon-do shows the same trend and seasonal variations with those of global monthly mean dataset. Nevertheless, the trends of $CO_2$ over Northeast Asia showed the higher than those of global and the trends also changes with different slope. $CO_2$ products derived from Greenhouse Gases Observing Satellite (GOSAT) and Atmospheric Infrared Sounder (AIRS) were compared with ground-based measurement at Anmyeon-do. The monthly mean values of GOSAT and AIRS data are systemically lower than those obtained at Anmyeon-do, however, the seasonal cycle of satellite products present the similar trend with values of global and Anmyeon-do. The accuracy of $CO_2$ products from GOSAT and AIRS were evaluated statistically for two years from January 2011 to December 2012. GOSAT showed good correlation with the correlation coefficient, RMSD and bias of 0.947, 5.610 and -5.280 to ground-based measurements respectively, while AIRS showed reasonable comparison with 0.737, 8.574 and -7.316 at Anmyeon-do station, respectively.

Changes of Soil-Emission Gases and Microbial Diversity by Different Fertilizers Supplemented after Application of Livestock-Manure Compost in Greenhouse Soil (시설재배지(施設栽培地)에서 축분퇴비(畜糞堆肥) 시용시(施用時) 보충비종(補充費種)에 따른 토양배출(土壤排出)가스 및 미생물다양성(微生物多樣性)의 변화(變化))

  • Kang, Hang-Won;Ko, Jee-Yeon;Park, Hyang-Mee;Lee, Jae-Saeng;Rang, Ui-Gum;Park, Kyeong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.1
    • /
    • pp.52-60
    • /
    • 2000
  • This study was conducted to gain basic data for alleviation of gas emission and conservation of healthy soil environment by investigating an aspect of gas emission and microbial diversity due to the supplement of different fertilizers after application with a livestock manure compost in greenhouse soils. Green pepper was cultivated in clay loamy soil from April to August. Before planting, a livestock manure compost was applied with $741mg\;ha^{-1}$ on the basis of the phosphate content contained in compost. And then, deficient nitrogen for cropping was supplemented with either quick-acting fertilizer of urea or a controlled slow release fertilizer made from urea formaldehyde(U/F). $NH_3$ and R $NH_2$ gases emitted from soil showed a low concentration in the early stage but a maximum in 27 days after planting, then decreased rapidly and not detected after 33 days. Their average concentrations were 42% and 85% lower in the treatment of slow release fertilizer than that of urea fertilizer, respectively. $CO_2$ gas emitted under urea fertilization was ranged from 1,200 to $3,200mg{\ell}^{-1}$ and that in slow release fertilizer was $900{\sim}2,650mg\;{\ell}^{-1}$. The average concentration of urea treatment was $2,260mg{\ell}^{-1}$ and 30% higher than that of slow release fertilizer. The treatment of slow release fertilizer with the lapse of cropping time populated larger in numbers of bacteria, actinomycetes, nitrate bacteria and nitrate reduction bacteria, and ratios of bacteria and actinmycetes to fungi than that of urea fertilizer. But the number of fungi was higher in the treatment of urea fertilizer and denitrifying bacteria showed a similar trend in both treatments. The microbial diversity index, which calculated with numbers of 6 species of microorganisms, was decreased with increasing of growing stage in the range of 0.1 to 0.35 and that was higher in the tratment of slow release fertilizer than urea.

  • PDF

Development of the Advanced Manganese-Based Sorbent for Hot Coal Gas Desulfurization (고온 석탄 가스 탈황을 위한 개선된 망간계 탈황제 개발)

  • Shon, Byung-Hyun;Choi, Eun-Hwa;Cho, Ki-Chul;Jeon, Dae-Young;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.291-302
    • /
    • 2000
  • This experiments have been made to develop of manganese-based sorbent for the removal of hydrogen sulfide from hot coal gases. Manganese-based sorbent were tested in an ambient-pressure fixed-bed reactor to determine steady state $H_2S$ concentrations, breakthrough times and feasibility of the sorbent when subjected to cycle sulfidation and regeneration testing. Effects of particle size of sorbent, temperature of sulfidation, regeneration temperature and regeneration characteristics on the $H_2S$ removal efficiency were investigated. Experimental results showed that the $H_2S$ removal efficiency was optimal when the temperature was about $800^{\circ}C$ and the smaller particle size, the better $H_2S$ removal efficiency but in the range of 0.214~0.631mm didn't influence it much. The equilibrium constant(K) is represented as a log(K)=3.396/T-1.1105 and the utilization efficiency of sorbents was about 92% at $800^{\circ}C$. Regeneration in air produced $SO_2$ concentration as high as 8.5% at $800^{\circ}C$, 8.4% at $850^{\circ}C$, and 8.8% at $900^{\circ}C$ and may be used in sulfuric acid production.

  • PDF

Interference of Sulphur Dioxide on Balloon-borne Electrochemical Concentration Cell Ozone Sensors over the Mexico City Metropolitan Area

  • Kanda, Isao;Basaldud, Roberto;Horikoshi, Nobuji;Okazaki, Yukiyo;Benitez-Garcia, Sandy-Edith;Ortinez, Abraham;Benitez, Victor Ramos;Cardenas, Beatriz;Wakamatsu, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.162-174
    • /
    • 2014
  • An abnormal decrease in ozonesonde sensor signal occurred during air-pollution study campaigns in November 2011 and March 2012 in Mexico City Metropolitan Area (MCMA). Sharp drops in sensor signal around 5 km above sea level and above were observed in November 2011, and a reduction of signal over a broad range of altitude was observed in the convective boundary layer in March 2012. Circumstantial evidence indicated that $SO_2$ gas interfered with the electrochemical concentration cell (ECC) ozone sensors in the ozonesonde and that this interference was the cause of the reduced sensor signal output. The sharp drops in November 2011 were attributed to the $SO_2$ plume from Popocat$\acute{e}$petl volcano southeast of MCMA. Experiments on the response of the ECC sensor to representative atmospheric trace gases showed that only $SO_2$ could cause the observed abrupt drops in sensor signal. The vertical profile of the plume reproduced by a Lagrangian particle diffusion simulation supported this finding. A near-ground reduction in the sensor signal in March 2012 was attributed to an $SO_2$ plume from the Tula industrial complex north-west of MCMA. Before and at the time of ozonesonde launch, intermittent high $SO_2$ concentrations were recorded at ground-level monitoring stations north of MCMA. The difference between the $O_3$ concentration measured by the ozonesonde and that recorded by a UV-based $O_3$ monitor was consistent with the $SO_2$ concentration recorded by a UV-based monitor on the ground. The vertical profiles of the plumes estimated by Lagrangian particle diffusion simulation agreed fairly well with the observed profile. Statistical analysis of the wind field in MCMA revealed that the effect Popocat$\acute{e}$petl was most likely to have occurred from June to October, whereas the effect of the industries north of MCMA, including the Tula complex, was predicted to occur throughout the year.

An Experimental Study on the Combustion Characteristics of a Catalytic Combustor for an MCFC Power Generation System (MCFC 발전시스템용 촉매연소기의 연소 특성에 관한 실험적 연구)

  • Hong, Dong-Jin;Ahn, Kook-Young;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • In the MCFC power generation system, the combustor supplies a high temperature mixture of gases to the cathode and heat to the reformer by using the off-gas from the anode; the off-gas includes high concentrations of $H_2O$ and $CO_2$. Since a combustor needs to be operated in a very lean condition and avoid local heating, a catalytic combustor is usually adopted. Catalytic combustion is also generally accepted as one of the environmentally preferred alternatives for generation of heat and power from fossil fuels because of its complete combustion and low emissions of pollutants such as CO, UHC, and $NO_x$. In this study, experiments were conducted on catalytic combustion behavior in the presence of Pd-based catalysts for the BOP (Balance Of Plant) of 5 kW MCFC (Molten Carbonate Fuel Cell) power generation systems. Extensive investigations were carried out on the catalyst performance with the gaseous $CH_4$ fuel by changing such various parameters as $H_2$ addition, inlet temperature, excess air ratio, space velocity, catalyst type, and start-up schedule of the pilot system adopted in the BOP.