• Title/Summary/Keyword: Gamma distributions

Search Result 251, Processing Time 0.022 seconds

The Role of Negative Binomial Sampling In Determining the Distribution of Minimum Chi-Square

  • Hamdy H.I.;Bentil Daniel E.;Son M.S.
    • International Journal of Contents
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • The distributions of the minimum correlated F-variable arises in many applied statistical problems including simultaneous analysis of variance (SANOVA), equality of variance, selection and ranking populations, and reliability analysis. In this paper, negative binomial sampling technique is employed to derive the distributions of the minimum of chi-square variables and hence the distributions of the minimum correlated F-variables. The work presented in this paper is divided in two parts. The first part is devoted to develop some combinatorial identities arised from the negative binomial sampling. These identities are constructed and justified to serve important purpose, when we deal with these distributions or their characteristics. Other important results including cumulants and moments of these distributions are also given in somewhat simple forms. Second, the distributions of minimum, chisquare variable and hence the distribution of the minimum correlated F-variables are then derived within the negative binomial sampling framework. Although, multinomial theory applied to order statistics and standard transformation techniques can be used to derive these distributions, the negative binomial sampling approach provides more information regarding the nature of the relationship between the sampling vehicle and the probability distributions of these functions of chi-square variables. We also provide an algorithm to compute the percentage points of the distributions. The computation methods we adopted are exact and no interpolations are involved.

Relationships between Distribution of Number of Transferable Embryos and Inbreeding Coefficient in a MOET Dairy Cattle Population

  • Terawaki, Y.;Asada, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1686-1689
    • /
    • 2002
  • Genetic gains and inbreeding coefficients in a Holstein MOET breeding population were predicted under different conditions relating to the distribution of the number of transferable embryos collected per flush using Monte Carlo simulation. The numbers of transferable embryos collected per flush were determined using five distributions (distributions 1, 3, 5, 7 and 9) with different aspects and similar means. Distributions 1, 3, 5, 7 and 9 were assumed to have gamma distribution's parameters ($\alpha$ and $\beta$) of (1 and 4.4), (3 and 1.47), (5 and 0.88), (7 and 0.63) and (9 and 0.49), respectively. Inbreeding rates were statistically significantly different among distributions but genetic gains were not. Relationships between inbreeding rates and variances of family size could be were clearly distinguished. The highest inbreeding coefficients were predicted in distribution 1 with the largest variance of family size, while distributions 5, 7 and 9 with smaller variance of family size had lower inbreeding coefficients.

Families of Distributions Arising from Distributions of Ordered Data

  • Ahmadi, Mosayeb;Razmkhah, M.;Mohtashami Borzadaran, G.R.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.105-120
    • /
    • 2015
  • A large family of distributions arising from distributions of ordered data is proposed which contains other models studied in the literature. This extension subsume many cases of weighted random variables such as order statistics, records, k-records and many others in variety. Such a distribution can be used for modeling data which are not identical in distribution. Some properties of the theoretical model such as moment, mean deviation, entropy criteria, symmetry and unimodality are derived. The proposed model also studies the problem of parameter estimation and derives maximum likelihood estimators in a weighted gamma distribution. Finally, it will be shown that the proposed model is the best among the previously introduced distributions for modeling a real data set.

ON THE CONVOLUTION OF EXPONENTIAL DISTRIBUTIONS

  • Akkouchi, Mohamed
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.501-510
    • /
    • 2008
  • The distribution of the sum of n independent random variables having exponential distributions with different parameters ${\beta}_i$ ($i=1,2,{\ldots},n$) is given in [2], [3], [4] and [6]. In [1], by using Laplace transform, Jasiulewicz and Kordecki generalized the results obtained by Sen and Balakrishnan in [6] and established a formula for the distribution of this sum without conditions on the parameters ${\beta}_i$. The aim of this note is to present a method to find the distribution of the sum of n independent exponentially distributed random variables with different parameters. Our method can also be used to handle the case when all ${\beta}_i$ are the same.

  • PDF

Three-Parameter Gamma Distribution and Its Significance in Structural Reliability

  • Zhao, Yan-Gang;Alfredo H-S. Ang
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • Information on the distribution of the basic random variables is essential for the accurate evaluation of structural reliability. The usual method for determining the distribution is to fit a candidate distribution to the histogram of available statistical data of the variable and perform appropriate goodness-of-fit tests. Generally, such candidate distributions would have two parameters that may be evaluated from the mean value and standard deviation of the statistical data. In the present paper, a-parameter Gamma distribution, whose parameters can be directly defined in terms of the mean value, standard deviation and skewness of available data, is suggested. The flexibility and advantages of the distribution in fitting statistical data and its significance in structural reliability evaluation are identified and discussed. Numerical examples are presented to demonstrate these advantages.

  • PDF

The Use of Generalized Gamma-Polynomial Approximation for Hazard Functions

  • Ha, Hyung-Tae
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1345-1353
    • /
    • 2009
  • We introduce a simple methodology, so-called generalized gamma-polynomial approximation, based on moment-matching technique to approximate survival and hazard functions in the context of parametric survival analysis. We use the generalized gamma-polynomial approximation to approximate the density and distribution functions of convolutions and finite mixtures of random variables, from which the approximated survival and hazard functions are obtained. This technique provides very accurate approximation to the target functions, in addition to their being computationally efficient and easy to implement. In addition, the generalized gamma-polynomial approximations are very stable in middle range of the target distributions, whereas saddlepoint approximations are often unstable in a neighborhood of the mean.

Application of Finite Mixture to Characterise Degraded Gmelina arborea Roxb Plantation in Omo Forest Reserve, Nigeria

  • Ogana, Friday Nwabueze
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.6
    • /
    • pp.451-456
    • /
    • 2018
  • The use of single component distribution to describe the irregular stand structure of degraded forest often lead to bias. Such biasness can be overcome by the application of finite mixture distribution. Therefore, in this study, finite mixture distribution was used to characterise the irregular stand structure of the Gmelina arborea plantation in Omo forest reserve. Thirty plots, ten each from the three stands established in 1984, 1990 and 2005 were used. The data were pooled per stand and fitted. Four finite mixture distributions including normal mixture, lognormal mixture, gamma mixture and Weibull mixture were considered. The method of maximum likelihood was used to fit the finite mixture distributions to the data. Model assessment was based on negative loglikelihood value ($-{\Lambda}{\Lambda}$), Akaike information criterion (AIC), Bayesian information criterion (BIC) and root mean square error (RMSE). The results showed that the mixture distributions provide accurate and precise characterisation of the irregular diameter distribution of the degraded Gmelina arborea stands. The $-{\Lambda}{\Lambda}$, AIC, BIC and RMSE values ranged from -715.233 to -348.375, 703.926 to 1433.588, 718.598 to 1451.334 and 3.003 to 7.492, respectively. Their performances were relatively the same. This approach can be used to describe other irregular forest stand structures, especially the multi-species forest.

Relative Dose Distribution in the Biological Irradiation Facility at TRIGE Mark-III Reactor

  • Kim, Byung-Sung;Ha, Chung-Woo;Lee, Chang-Kun
    • Nuclear Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.277-284
    • /
    • 1975
  • A result of measurement for the relative dose distribution of neutron gamma mixed radiation field in the biological irradiation facility installed at TRIGA Mark-III reactor is described. The relative dose distributions of neutron-gamma mixed radiation field in the biological exposure room have been experimentally determined using a thermoluminescent dosimeter. Presented herein in graphical forms are the experimental results obtained. It as observed that the region commonly having the characteristics of rather homogeneous horizontal and lateral dose distributions is confined to the area bounded by the two planes horizontally parallel to the beam direction with heights of about 40 cm and 130 cm, respectively, at distances beyond 100 cm from the segmentary surface of the aluminum pool liner projected into the the exposure room, while other areas show a steeper gradient in dosage, especially the places adjacent to the segment of the aluminum pool liner and near the inner po${\gamma}$lion of the concrete walls of the exposure room.

  • PDF

Calculation of Jaws-only IMRT (JO-IMRT) dose distributions based on the AAPM TG-119 test cases using Monte Carlo simulation and Prowess Panther treatment planning system

  • Luong, Thi Oanh;Duong, Thanh Tai;Truong, Thi Hong Loan;Chow, James CL
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4098-4105
    • /
    • 2021
  • The aim of this study is to calculate the JO-IMRT dose distributions based on the AAPM TG-119 using Monte Carlo (MC) simulation and Prowess Panther treatment planning system (TPS) (Panther, Prowess Inc., Chico, CA). JO-IMRT dose distributions of AAPM TG-119 were calculated by the TPS and were recalculated by MC simulation. The DVHs and 3D gamma index using global methods implemented in the PTW-VeriSoft with 3%/3 mm were used for evaluation. JO-IMRT dose distributions calculated by TPS and MC were matched the TG-119 goals. The gamma index passing rates with 3%/3 mm were 98.7% for multi-target, 96.0% for mock prostate, 95.4% for mock head-and-neck, and 96.6% for C-shape. The dose in the planning target volumes (PTV) for TPS was larger than that for the MC. The relative dose differences in D99 between TPS and MC for multi-target are 1.52%, 0.17% and 1.40%, for the center, superior and inferior, respectively. The differences in D95 are 0.16% for C-shape; and 0.06% for mock prostate. Mock head-and-neck difference is 0.40% in D99. In contrast, the organ curve for TPS tended to be smaller than MC values. JO-IMRT dose distributions for the AAPM TG-119 calculated by the TPS agreed well with the MC.

Robust second-order rotatable designs invariably applicable for some lifetime distributions

  • Kim, Jinseog;Das, Rabindra Nath;Singh, Poonam;Lee, Youngjo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.595-610
    • /
    • 2021
  • Recently a few articles have derived robust first-order rotatable and D-optimal designs for the lifetime response having distributions gamma, lognormal, Weibull, exponential assuming errors that are correlated with different correlation structures such as autocorrelated, intra-class, inter-class, tri-diagonal, compound symmetry. Practically, a first-order model is an adequate approximation to the true surface in a small region of the explanatory variables. A second-order model is always appropriate for an unknown region, or if there is any curvature in the system. The current article aims to extend the ideas of these articles for second-order models. Invariant (free of the above four distributions) robust (free of correlation parameter values) second-order rotatable designs have been derived for the intra-class and inter-class correlated error structures. Second-order rotatability conditions have been derived herein assuming the response follows non-normal distribution (any one of the above four distributions) and errors have a general correlated error structure. These conditions are further simplified under intra-class and inter-class correlated error structures, and second-order rotatable designs are developed under these two structures for the response having anyone of the above four distributions. It is derived herein that robust second-order rotatable designs depend on the respective error variance covariance structure but they are independent of the correlation parameter values, as well as the considered four response lifetime distributions.