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ABSTRACT

Information on the distribution of the basic random variables is essential for the accurate evaluation of structural reliability. The
usual method for determining the distribution is to fit a candidate distribution to the histogram of available statistical data of the
variable and perform appropriate goodness-of-fit tests. Generally, such candidate distributions would have two parameters that may
be evaluated from the mean value and standard deviation of the statistical data. In the present paper, a-parameter Gamma distribution,
whose parameters can be directly defined in terms of the mean value, standard deviation and skewness of available data, is suggested.
The flexibility and advantages of the distribution in fitting statistical data and its significance in structural reliability evaluation
are identified and discussed. Numerical examples are presented to demonstrate these advantages.
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1. Introduction

In structural reliability evaluation, the basic random
variables representing the uncertain quantities, such as
loads, environmental factors, material properties, struc-
tural dimensions and variables accounting for the mod-
eling and prediction errors, are generally assumed to have
known cumulative distribution functions (CDF) or prob-
ability density functions (PDF). Determination of the dis-
tributions of these basic random variables is essential for
the accurate evaluation of the reliability of a structure.

Often, the method for determining the required dis-
tribution is to fit the histogram of the statistical data of a
variable with a candidate distribution (Ang and Tang,
1975), and apply statistical goodness-of-fit tests. A Baye-
sian approach in which the distribution is assumed to be a
weighted average of all candidate distributions, where the
weights represent the subjective probabilities of the
respective candidates, was suggested by Der Kiureghian
and Liu (1986). A method of estimating complex dis-
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tributions using the B-spline functions has been proposed
by Zong and Lam (1998), in which the determination of
the PDF is formulated as a nonlinear programming prob-
lem and iteration is required.

Two-parameter distributions such as the normal, log-
normal, Weibull and Gamma distributions are often
selected as the candidate distribution, in which the param-
eters of the distribution are generally evaluated from the
mean value and standard deviation of the available data.
After the two parameters are determined, the distribution
form and any higher-order moments, such as skewness,
may be evaluated; quite often these higher-order moments
may not be consistent with those of the available data. This
is illustrated with the following: The two histograms
shown in Fig. 1 represent the observed variabilities in the
properties of H-shape structural steel (after Ono et al.,
1986). Fig. 1(a) shows the histogram of the section area
and Fig.1(b) the histogram of the residual stress at the
flange. From Fig. la, one can see that the coefficient of
variation of the section area is small, 0.0514, whereas the
skewness is large 0.7085. Conversely, the coefficient of
variation of the residual stress from Fig. 1(b) is large,
0.7492, whereas the skewness is 0.823. The skewness of
the normal, lognormal, Weibull and Gamma distributions
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that have the same mean value and standard deviation as
the data in Fig.1(a) can be shown to be, respectively, 0.00,
0.1555, —0.9121 and 0.1024. Clearly, none of these two-
parameter distributions has skewness that is consistent
with the skewness of the data which is 0.7085. Similarly,
with respect to Fig. 1(b), the skewness of these same four
distributions can be shown to be 0.00, 1.7819, 0.6834 and
1.4984, respectively. Again, none of these matches the
skewness of the data which is 0.823 in this case.

As illustrated with the data of Fig. 1, two-parameter dis-
tributions may not be appropriate when the skewness of
the statistical data is important and must be reflected in the
distribution.

For the above purpose, three-parameter distributions are
required, such as the 3P lognormal distribution (Tichy,
1995) and the square normal distribution (see Appendix
D). The evaluation of the parameters of these distributions,
however, are complicated; furthermore, there is a limi-
tation on the skewness for the square normal distribution.
In the present paper, a three-parameter (3P) Gamma dis-
tribution is suggested, in which the three parameters can
be directly defined in terms of the mean value, standard
deviation and skewness. Besides being quite simple and
flexible for fitting statistical data of basic random vari-
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Fig. 1. Two histogram examples of practical data.

ables, the 3P Gamma distribution is convenient also for
performing normal transformations needed in structural
reliability analysis as described below.

2. Three-parameter Gamma Distribution

2.1 Definition of the Distribution

In the Type 111 distribution of the Pearson system (Stuart
and Ord, 1987), it can be shown that the PDF of the 3P
Gamma distribution is (see Appendix A):

PY :
n=—A 5 x-u "exp(_z"—“ﬂ) 1)
exp(A) (A% o | o
in which g, o and A are the three parameters of the dis-
tribution.
For a standardized variable x, = (x — 1)/0, the standard
form of the PDF is expressed as

/12

fix,) = A+x )" exp(-Ax,) )

exp(A) [(AY)
Let, y=A(A+x) then the PDF in Eq. 2 becomes
1 Y
%
which is the standard Gamma distribution with parame-

ter A%. Therefore, the CDF of the distribution can be
obtained as

) = P exp () 3)

where F_ . is the CDF of a standard gamma distribution
with parameter of A°.

Equations (1) or (2) is the PDF of the three-parameter
(3P) Gamma distribution.

2.2 Moments and Some Properties of the Distribution
The moments of x in any order are obtained as(see

Appendix B):

Elxl=u (5a)

El(x-)) =0

A3 5

)5

(5b)

(5d)
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From Egs. (5a) and (5b), one can see that the mean value
and standard deviation of x are equal to the parameters u
and o, respectively, of the distribution. The third dimen-
sionless central moment, i.e., the skewness ¢ is a function
of only the parameter A and is independent of y and o©.
Therefore, the distribution can be defined by the three
parameters, mean value i, standard deviation ¢, and skew-
ness @, of a random variable. Using Eq. (5¢), the param-
eter A can be easily determined as

2 6)
3

A=
o
When ¢ approaches 0, A approaches infinity, using the

Stirling formula, the limit of the PDF is obtained as(see
Appendix C)

lzm [f(x) 1= ﬁeXp( é 2) (7

Therefore, the distribution approaches the normal dis-
tribution when ¢ approaches 0.

The PDFs of the standard three-parameter Gamma dis-
tribution for o >0 and o <0 are shown in Fig. 2. When
a, =0, the PDF degenerates to that of the standard normal
distribution and is depicted as a thick solid line in Fig. 2.
From Fig. 2, one can see that the distribution reflects the
characteristics of the skewness.

When o, =2, A becomes 1, and the PDF becomes

f(xs) = CXp(—XS) (8)
which is the exponential distribution.

From Eq. (2), it may be observed that the random vari-
able x, is defined in the following ranges:

~oo<x,<-A for A>0 (9a)

_A<x,<—oo for A>0 (9b)

When x, approaches —A, the limit value of the PDF is
obtained as

FE
hm flxg) = hm/lr-w_( > ‘Z.+x’ (10)

From Eq. (10), it can be shown that:
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Fig. 2. PDFs of the standard 3P gamma distribution with varying oz,

o for|d]<1 or|04>2

lim_ flx,)=1{ 1 for]A=1 or|oy|=2 (11)

X, -A
0 forl|>1 or |oy|<2

2.3 Comparison with Other 3-Parameter Distributions

The PDFs of the 3P Gamma, the square normal, and the
3P lognormal distributions (see Appendix D) are depicted
in Fig. 3 for skewness of o,=0.4, 0.8, 1.2, 1.6, 2.0 and 3.0.
From Fig. 3, one can see that for small , e.g., =04,
0.8, there is no significant difference among the PDFs of
the three different distributions. When o;=3.0, the square
normal distribution does not exist because o is limited to
the range of —2.828 <y <2.828 for this distribution
(Zhao and Ono, 2000).

The relationship between o and ¢, for the three 3P dis-
tributions are shown in Fig. 4, from which one can observe
that all the three distributions approach the normal dis-
tribution when ¢, approaches 0. For small skewness, e.g.,
o, < 1, the three lines in Fig. 4 are quite close; this is the
reason why there is no significant difference among the
PDFs of the three distributions as described above.
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Fig. 3. Comparisons of 3-parameter distributions.
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3. Applications in Data Analysis and Structural
Reliability

3.1 Statistical Data Analysis

The proposed three-parameter Gamma distribution is
often appropriate for fitting statistical data of a random
variable. For example, consider the measured data of H-
shape structural steel described earlier. The histogram of
the section area is shown in Fig. 5(a), in which the PDFs of

(e) a3=2.0

(f) 23=3.0

the normal and lognormal distributions, with the same
mean value and standard deviation as the data, and the
PDF of the 3P Gamma distribution whose mean value,
standard deviation and skewness are equal to those of the
data, are depicted in Fig. 5(a), revealing the following:
(1) The normal distribution is clearly not appropriate as
its skewness is zero, whereas the skewness of the data is
0.7085. (2) The skewness of the lognormal distribution is a
function of the coefficient of variation (c.0.v.). In the
present case, the c.o.v. of the lognormal distribution is
0.051, thus, its skewness is 0.1555 which is much smaller
than that of the data (0.7085). (3) The skewness of the
three-parameter Gamma distribution can be equated to that
of the statistical data, and thus can fit the histogram much
better than the normal or the lognormal distribution.
Results of the Chi-square tests of the three distributions
are listed in Table 1, in which the goodness-of-fit tests
were obtained using the following equation (Ang and
Tang, 1975):
(O-E)
T= ZT

i=]

(12)

where O, and E, are the observed and theoretical frequen-
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Fig. 5. Fitting results for data of H-shapes structural steel.

cies, respectively, £ is the number of intervals used, and 7'is
a measure of the respective goodness of fit. From Table 1,
one can see that the goodness of fit of the proposed distri-

Table 1. Results of test for section area
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bution is 7= 24.8 which is much smaller than those of the
normal with 7= 91.8 or the lognormal with 7= 70.8.

Similarly, the histogram of measured residual stress and
the PDFs of the three distributions are shown in Fig. 5(b);
the corresponding results of the Chi-square tests are listed
in Table 2. From Fig. 5(b), one can observe that the log-
normal distribution with a skewness of 1.7819 is much
larger than that of the data of 0.7492. Clearly, therefore,
the proposed 3P Gamma distribution fits the histogram
much better than the normal or lognormal distribution.
Also, from Table 2, the goodness-of-fit tests verify that
the proposed distribution has a better fit, with 7=13.4,
than the normal with 7=47.3 or the lognormal with
T=26.7.

The above examples clearly demonstrate the advantages
of the 3P Gamma distribution for fitting statistical data
with significant skewness.

3.2 Representations of One and Two-Parameter Distri-
butions

The 3P Gamma distribution, as defined in Eq. (1) or (2),
can be used to represent or approximate any one or two-
parameter distributions by equating the respective three
moments. This is illustrated with the Gamma, Weibull,
lognormal and Exponential distributions, all of which are
one- or two-parameter distributions. Fig. 6 shows the
PDFs of the above distributions depicted as thin solid
lines; in these same figures the respective 3P Gamma dis-
tributions with the same first three moments as those of the
corresponding one or two-parameter distributions, are
depicted as thick dash lines. In these figures, all the two-
parameter distributions are shown with mean values of
=25, 30, 35 and 40, and coefficients of variation

Predicited Frequency

Goodness of fit

Intervals Freq.
Nor. Log. Pres. Nor. Log. Pres.
<0.908 9 38.7 353 18.0 228 19.6 4.46
0.908-0.938 85 69.3 722 83.7 3.54 227 0.02
0.928-0967 181 123 129 154 26.8 20.8 4.61
0.967-0.996 155 160 162 168 0.13 0.28 1.03
0.996.1.025 141 150 146 132 0.54 0.17 0.63
1.025-1.054 66 102 97.5 82.6 12.9 10.2 3.36
1.054-1.083 35 50.5 49.1 44.1 4.77 4.06 1.87
1.083-1.113 34 18.2 19.3 20.8 13.6 11.2 8.38
>1.113 5 4.75 595 14.5 6.67 2.28 0.43
Sum 718 718 718 718 91.8 70.8 248

Note: Nor.=Normal, Log.=Lognormal, Pres.=Present
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Table 2. Results of test for residual stress

Predicited Frequency Goodness of fit

Intervals Freq.
Nor. Log. Pres. Nor. Log. Pres.
<0.111 15 32.6 6.54 232 9.48 10.9 2.88
0.111-0.222 72 45.4 73.2 61.0 15.6 0.02 1.97
0.222-0.333 88 67.0 95.9 78.1 6.57 0.66 1.25
0.333-0.444 54 71.6 66.0 66.5 433 2.17 2.35
0.444-0.555 38 554 37.1 442 5.44 0.02 0.87
0.555-0.667 31 31.0 19.5 24.9 0.00 6.75 1.51
0.667-0.778 16 12.5 10.1 12.4 0.96 3.40 1.03
0.778-0.889 3 3.67 5.29 5.68 0.12 0.99 1.27
>().889 3 0.91 6.32 4.00 4.81 1.75 0.25
Sum 320 320 320 320 47.3 26.7 13.4

Note: Nor.=Normal, Log.=Lognormal, Pres.=Present
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Fig. 6. PDF comparisons with some two parameter distributions.
V=0.1, 0.2, 0.3 and 0.4. tural reliability analysis as described below in Sect. 3.3.

Fig. 6 shows that the thick dash lines coincide closely
with the thin solid lines, demonstrating the flexibility of the 3.3 Significance to Structural Reliability Assessment
3P Gamma distribution for representing one or two-param- The 3P Gamma distribution provides special properties
eter distributions. This flexibility can be useful in the struc-  that are convenient for structural reliability evaluation.



Yan-Gang Zhao and Alfiedo H-S. Ang

Consider a performance function G(X) of a structural sys-
tem, where X is the vector of basic random variables. If the
first three moments of G(X) can be obtained, the prob-
ability of failure, P(G<0), can be readily obtained using
the 3P Gamma distribution.

For the standardized random variable

_ G-Ug
O¢g

(13)

5

Since
Prob[G<0] = Prob[x < Ho G} Problx,<—By, ] (14)
G

where, (. and o, are the mean value and standard devia-
tion, respectively, of the performance function G. Using
Eq. (4), the third-moment reliability index can be given as

By = -0 [F, p(2A=Bopp]] (15)
where f,,,=u./0; and B, are the second and third
moment reliability indices, respectively, A =2/q is the
parameter of the 3P Gamma distribution in which ¢, is the
skewness of G, and Fox is the CDF of the standard
gamma distribution with' parameter 22 Although Eq. (15)
is not in explicit form, it can be computed quite easily
because standard Gamma distribution is a commonly used
distribution.

If G(X) is approximated as a second-order surface, the
first three moments can be easily obtained and Eq. (15)
can be used directly to obtain the second-order third
moment reliability index (Zhao and Ono, 2002). In many
cases, the performance function is expressed as a linear
sum of independent random variables in the original
space:

GX) =Y ax;
Jj=1
In these latter cases, the first three moments of G(X) are
as follows:

(16)

He =Y al (17a)
f=1

og=Yao (17b)
j=1

Jj=1
Then, substituting y., o, 05 into Eq. (15), the third
moment reliability index can be easily obtained.

Computational Structural Engineering 1 (2002) 1~10 7

For a specific example, consider the plastic collapse
mechanism of a one-bay frame with the following per-
formance function (after Der Kiureghian et al., 1987):

G(X) = x; +2x,+ 2x5+Xx,— 5x,— 5x (18)

The variables x; are statistically independent and log-
normally distributed with mean values u, =y, ==
W, =120, p,=50 and u, =40, and standard deviations
0,=0,=0,=0,=12, 0,=15 and o, = 12.. All of the
random variables in Eq. (18) have known probability dis-
tributions, and thus the reliability index can be readily
obtained using the First-Order Reliability Method (Ang
and Tang, 1984) giving the FORM reliability index of
B-=2.348, which corresponds to a failure probability of
P,.=10.00943. According to Der Kiureghian et al. (1987),
the correct failure probability for this problem is P.=
0.0121.

The skewnesses of the variables x,can be easily obtained
as oy =0, =04, =04, =0301, and o= 0, =0.927.
Using Eq. (17), the mean value, standard deviation and
skewness of G(X) are u, =270, o,=103.27 and o,;=—
0.5284. With these first three moments of G(X), the sec-
ond- and third-moment reliability indices can be shown to
be f,,, = 2.6145 and §3;,, = 2.2621, respectively. The prob-
ability of failure corresponding to the third-moment reli-
ability index is 0.0118, which is much closer to the correct
value of 0.0121 than that of FORM for this example.

3.4 Reliability Analysis Involving Variables with Unknown
Probability Distributions

In the first- or second-order reliability method, the prob-
ability distributions of the basic random variables are nec-
essary to perform the normal transformations (the x-u
transformation and its inverse the u-x transformation).
Often, in practical applications, the probability distribu-
tions of the random variables are unknown, and the prob-
abilistic information may be defined only in terms of the
respective first few statistical moments. With the 3P
Garnma distribution, first- or second-order reliability anal-
ysis can be conveniently performed using the first three
moments (4, 0, and «; in the x-u and u-x transformations
with the aid of the following equations.

u= (D_l[

F,AAA+x)]] (192)

X, /11 el @] -4

(19b)
where x_ is the normalized variable define in Eq. (13), and

F ; 4 18 the standard Gamma distribution.
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Furthermore, random samples of the variables can be
easily generated using Eq. (19b) for Monte-Carlo sim-
ulations.

For illustration, consider the following performance
function of a simple structural column,

G(X) = Ax x;-x;3 (20)
where 4 is the nominal section area, x, is a random variable
representing the uncertainty in 4, x, is the yield stress, and
x, is a compressive load. Assume the column is made of H-
shape structural steel with a H300 x 200 (JIS 1977) section
having an area 4 =72.38 cm?, and a material of SS41
(JIS1976). The CDFs of x, and x, are unknown; the respec-
tive first three moments are p, =0.990, c =0.051,
oy, =0.709, and u, =3.055 t/em?, 0, =0.364, o, =0.512.
The compressive load x, is assumed to be a lognormal vari-
able with a mean value of ¢1,=150 t and a standard devia-
tion of ¢, = 45t.

Although the CDFs of x, and x, are unknown, the x-u
and u-x transformations can be obtained with Eqs. (19a)
and (19b), without resorting to the Rosenblatt transfor-
mations. In the present case, FORM would yield the fol-
lowing after three iterations: the design point in standard
normal space is [-0.194, —0.460, 1.161], and the first order
reliability index is 8, = 1.2634 with corresponding failure
probability of P,=0.1033. The average curvature radius of
the limit state surface at the design point is 73.22. The per-
formance function may be approximated with the simple
parabolic function (Zhao and Ono, 2002)

G(U) = Br+0.0068(u +u3)—us 1)

The first three moments of G in Eq. (21) can be obtained
as i, =1.2774, o, = 1.0001, and ¢, = 0.00001. With these
first three moments of the above second order perfor-
mance function, the second and third moment reliability
indices can be shown to be B, = B, = 1.277 with a cor-
responding probability of failure of P,=0.1008. Fur-
thermore, using Eq. (19b), the random samples of x, and x,
can be easily generated for Monte-Carlo simulation yield-
ing a probability of failure of P =0.1013 with a sample
size of 10,000.

4. Conclusions

A three-parameter Gamma distribution is introduced,
and its applications are emphasized including its signif-
icance in structural reliability assessment. The special
attributes of the distribution include the following:

(1) The three independent parameters of the distribution
are conveniently related to the mean, variance, and
skewness of a random variable.

(2) With three parameters, the distribution has more
flexibility for fitting statistical data of basic random
variables, and can more effectively fit the histograms
of available data than two-parameter distributions.

(3) The 3P Gamma distribution can be used to represent
some popular two-parameter distributions, includ-
ing the standard Gamma, Weibull and lognormal
distributions.

(4) For some performance functions, such as second-
order performance functions in the standard space,
or linear performance functions in the original space,
for which the first three moments can be obtained,
the 3P Gamma distribution can be conveniently
applied to obtain a moment-based reliability index.

(5) For random variables defined only by its first three
moments, and otherwise unknown or unspecified
probability distributions, first-order or second-order
reliability analysis can be conveniently performed
by assuming the 3P Gamma distributions for the
variables.
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Appendix A: Derivation of the 3P Gamma dis-
tribution

For a standardized variable x=(x—u)/c, consider the
Pearson system (Stuart and Ord, 1987).

1df _ _

ax,+b

fex, c+bx +dx. (A-D
where

a=100,-1205-18 (A-2)

b= o(0,+3) (A-3)

¢ =40,-305 (A-4)

d=20,-305-6 (A-5)

When d=0, the distribution is the Pearson’s type III dis-
tribution. The PDF of x, is in the form of
fix,) = K(c+bxs)(a('*hz)/h!exp[—c%“] (A-6)
The range of x should be limited so that ¢ +b x >0,
which means x > — b/c for 5> 0 and x <— b/c for b<0.
Substituting =0 into Egs. (A-2) through (A-4), and

then using the results in Eq. (A-6), the PDF can be
expressed as,

flx,) = K(/l+xs)f_lexp(—lx_v) for o3>0 (A-7)
fx,) = K(—/’L—x_\,)iz_lexp(—/lxx) for o;<0 (A-8)
where A= 2/c.
For ¢, >0, let r=A(A+x), then
=y, = (L) )i
J._lf(xx) x‘_J.o (ﬂ,t) exp(-t+ )). t
=2 exp(A) A (A-9)
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that is
K= ——1 (A-10)
A" exp(AI(AY)
Then the PDF of x, becomes,
bY ,
flr) = —2—— (A )"
exp(A) (A7)
Similarly, for ¢, <0, let # = (=4 — x,), then the PDF of x,
is obtained

exp(-Ax,) (A-11)

A"
exp(A) (A%
Egs. (A-11) and (A-12) can be summarized as Eq. (2),
and general form is Eq. (1).

fx) = (= A=x,)" ~lexp(-Ax,) (A-12)

Appendix B: Moments of the 3P Gamma Dis-
tribution

For >0, the rth order moment of x_ is

M. = f xf(x)dx

C(A+x)t lexp(-Ax)dx,  (B-l
= oo Azm = )f x) lexp(=Ax)dx,  (B-1)
letr= (A +x), then Eq. (B-1) becomes
+oo ’ Aot
M, F(AZI ( )t exp(-t)dt (B-2)

Using the expansion formula of (a + by, Eq. (B-2) can
be summarized as

r

2 ('(:zji’)" 2] ;'J-+octll+r—jv]exp(_—[)dt (B—3)

m )2 ’
which is equwalent to
—IYr
. A - B-4
I F(A,) '(r—j)’ ( +r /) ( )

Using formula I'(z+1) = zI(z), Eq. (5¢) is therefore
obtained.
For o, <0, the same results follow.

Appendix C: The Limit of the 3P Gamma Dis-
tribution

The parameter A of the 3P Gamma distribution is A=2/
0y therefore, as o; —0, A—eo, Hence, as a3 —0, the
limit of the 3P Gamma PDF is,

“lexp(-Ax,) (C-1)

A 2
llmf(x ) = lim A (ﬂ.+xs))t

A=>=exp (A7) A%
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Using Stirling’s formula, the limit of the Gamma func-
tion in Eq. (C-1) can be expressed as

lim F(/lz) = [2rlim l)’u 2exp(—).z) (C-2)
Ao Aoewd
Substituting Eq. (C-2) into Eq. (C-1) yields
I L i (145 ) expcte C
tim ) = < lim (147 exp(-2x) (C3)
A1
Let y=(1+%") exp(-Ax,) then
In() = (A~ 1)
1n(1+xj)—/1xs
Since
. T 2 X\ _ L2 )
llllnw[ln(v)] = ,%E&[/l ln(l— /1) Z.xs}— 2% (C4)

the normal distribution of Eq. (7) is obtained.

Appendix D: Some 3P Distributions

D.1 Three-Parameter Lognormal Distribution

For a standardized variable x=(x—)/0, The probability
density function of the 3P lognormal distribution has been
defined (Tichy 1995) as,

1 1 e, ~ 1\
= A -
fx;) Jln(A)ix_‘.-—Ltb|€Xp[2ln(A)(ln( ) |t )} (-
where
1 1
a=1+L = arb)y r@-by -1 (D-2)
uj 1451

1/1 1 1 2
a %(a§+2), 2 [o2+4 (D-3)
in which ¢ and o are the mean and standard deviation of x,
respectively, and ¢ is third dimensionless central moment,
i.e., the skewness of x.

Since A4 and u, in (D-1) only depend only on ¢, the dis-
tribution is determined by the three parameters, y, o, and
«..

D.2 Square Normal Distribution

For a standardized variable x=(x—p)/c, the third-
moment transformation function is expressed as (Zhao and
Ono, 2000)

x,= - A+ 1 =207+ A’

and the corresponding probability density function is,

(D-4)

d)i:i(A/l+2/lZ+4lxs—A/l—2/l3)]

flx,) = (D-5)
J1+227 +4x,
in which
A= Sign(%)ﬁcos[ﬂ—;—lﬂ] (D-6)
o 2
0= arctan( 8- ] D-7)
3

Since Eq. (D-4) is a quadratic form of the standard nor-
mal variable, the distribution has been referred to as the
“square normal” distribution.



