• Title/Summary/Keyword: Gamma Ray Energy Spectrum

Search Result 114, Processing Time 0.032 seconds

MATERIAL INVESTIGATION AND ANALYSIS USING CHARACTERISTIC X-RAY

  • Oh, Gyu-Bum;Lee, Won-Ho
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.426-433
    • /
    • 2010
  • The characteristic X-rays emitted from materials after gamma ray exposure was simulated and measured. A CdTe semiconductor detector and a $^{57}Co$ radiation source were used for energy spectroscopy. The types of materials could be identified by comparing the measured energy spectrum with the theoretical X-ray transition energy of the material. The sample composition was represented by the $K_{\alpha1}$-line (Siegbahn notations), which has the highest intensity among the characteristic X-rays of each atom. The difference between the theoretic prediction and the experimental result of K-line measurement was < 0.61% even if the characteristic X-rays from several materials were measured simultaneously. 2D images of the mixed materials were acquired with very high selectivity.

Uranium Enrichment Determination Using a New Analysis Code for the U XKα Region: HyperGam-U

  • Kim, Junhyuck;Choi, Hee-Dong;Park, Jongho
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.778-784
    • /
    • 2016
  • HyperGam-U was recently developed to determine uranium enrichment based on ${\gamma}$- and X-ray spectroscopy analysis. The $XK_{\alpha}$ region of the uranium spectrum contains 13 peaks for $^{235}U$ and $^{238}U$ and is used mainly for analysis. To describe the X-ray peaks, a Lorentzian broadened shape function was used, and methods were developed to reduce the number of fitting parameters for decomposing the strongly overlapping peaks using channel-energy, energy-width, and energy-efficiency calibration functions. For validation, eight certified reference material uranium samples covering uranium enrichments from 1% to 99% were measured using a high-resolution planar high-purity germanium detector and analyzed using the HyperGam-U code. When corrections for the attenuation and true coincidence summing were performed for the detection geometry in this experiment, the goodness of fit was improved by a few percent. The enrichment bias in this study did not exceed 2% compared with the certified values for all measured samples.

EFFECTS OF WAVE-PARTICLE INTERACTIONS ON DIFFUSIVE SHOCK ACCELERATION AT SUPERNOVA REMNANTS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.49-63
    • /
    • 2013
  • Nonthermal radiation from supernova remnants (SNRs) provides observational evidence and constraints on the diffusive shock acceleration (DSA) hypothesis for the origins of Galactic cosmic rays (CRs). Recently it has been recognized that a variety of plasma wave-particle interactions operate at astrophysical shocks and the detailed outcomes of DSA are governed by their complex and nonlinear interrelationships. Here we calculate the energy spectra of CR protons and electrons accelerated at Type Ia SNRs, using time-dependent, DSA simulations with phenomenological models for magnetic field amplification due to CR streaming instabilities, Alf$\acute{e}$enic drift, and free escape boundary. We show that, if scattering centers drift with the Alf$\acute{e}$en speed in the amplified magnetic fields, the CR energy spectrum is steepened and the acceleration efficiency is significantly reduced at strong CR modified SNR shocks. Even with fast Afv$\acute{e}$nic drift, DSA can still be efficient enough to develop a substantial shock precursor due to CR pressure feedback and convert about 20-30% of the SN explosion energy into CRs. Since the high energy end of the CR proton spectrum is composed of the particles that are injected in the early stages, in order to predict nonthermal emissions, especially in X-ray and ${\gamma}-ray$ bands, it is important to follow the time dependent evolution of the shock dynamics, CR injection process, magnetic field amplification, and particle escape. Thus it is crucial to understand the details of these plasma interactions associated with collisionless shocks in successful modeling of nonlinear DSA.

A Study on the Development of Nuclear Radiation Detector with Silicon PIN Photodiode (실리콘 포토다이오드를 이용한 방사선 검출기 개발에 관한 연구)

  • Yi, Un-K.;Kim, Jung-S.;Sohn, Chang-H.;Baek, Kwang-R.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.754-756
    • /
    • 1999
  • In this paper, we have developed a high-sensitivity SNRD(Semiconductor Nuclear Radiation Detector) using silicon PIN photodiode. The SNRD is constructed with silicon PIN photodiode(S3590-05), preamplifier and shaping amplifier. To show the effectiveness of SNRD, nuclear radiation experiments are conducted with $\gamma$-ray Ba-133, Cs-137 and Co-60. The SNRD is different in characteristics of the energy spectrum to scintillation detectors. However, the SNRD have a good linearity on $\gamma$-ray energy and activity. The results of this paper can be applied to electronic personal dosimeter.

  • PDF

Gamma Radiation Induced Mutational Spectrum of Laccase Gene in Pleurotus ostreatus

  • Lee, Young-Keun;Chang, Hwa-Hyoung;Kim, Jae-Sung;Jang, Yu-Sin;Lee, Ho-Yong
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.4
    • /
    • pp.316-324
    • /
    • 2002
  • To investigate the mutational spectrum of laccase (Lac) genes (lac -A and lac -B) involved in degrading lignin which is the recalcitrant cell wall polymer, the genes of the Pleurotus ostreatus mutants induced by gamma ray radiation were amplified by PCR and were cloned. All partial lac-A genes of 4 mutants (PO-6, -7, -14 and -15) consisted of 1763 base pairs due to the deletion of two bases (491-nt and 492-nt) and addition of one base (875-nt) in 1764 base pairs of lac -A gene of PO-1. Totally 36 mutational hot spots were detected and 32 positions were mutated in all of those 4 mutants simultaneously. These mutations were predominantly A : T -> G : C transitions (40%). Putative amino acid sequences of lac -A genes of mutants have one simultaneous mutated residue (from Thr-44 to Ala-44). The 1764 bp of partial lac -B gene was cloned only in PO -5 mutant and contained 19 mutated bases. These mutations were predominantly G : C->A : T transitions (45%). Lac-B protein of PO-5 has two mutated residues of Glu-290 and His-363 from Ala-290 and Phe-363, respectively. The hyper-mutational positions were concentrated in specific regions of between 50-nt and 900-nt in lac genes. These results suggested that the mutational hotspots responded to gamma radiation could be in some genes, at least lac -A and lac -B of p. ostreatus.

Optimized Design and Manufacture of Wideband Pulsed Gamma-ray Sensors (광대역 펄스감마선 탐지센서 최적화 설계 및 제작)

  • Jeong, Sang-hun;Lee, Nam-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.223-228
    • /
    • 2017
  • In this paper, we are proposing an optimal design of wideband pulsed type gamma-ray sensors. These sensors were manufactured based on the design results and after word electrical properties were analyzed. The sensor input parameters were derived on the basis of pulsed gamma-ray spectrum and time-dependent energy rate, and the output current which were derived on the basis of the sensor sensitivity control circuit. Pulsed gamma-ray sensors were designed using the TCAD simulators. The design results show that the optimal Epi layer thickness is 45um with the applied voltage 3.3V and the diameter is 2.0mm. The doping concentrations are as follows : N-type is an Arsenic as $1{\times}10^{19}/cm^3$, P-type is a Boron as $1{\times}10^{19}/cm^3$ and Epi layer is Phosphorus as $3.4{\times}10^{12}/cm^3$. The fabricated sensor was a leakage current, 12pA at voltage -3.3V and fully depleted mode at voltage -5V. A test result of pulsed radiation shows that the sensor gives out the optimal photocurrent.

Fabrication and Performance of Microcolumnar CsI:Tl onto Silicon Photomultiplier (실리콘광증배관 기반의 미세기둥 구조 CsI:Tl 제작 및 평가)

  • Park, Chan-Jong;Kim, Ki-Dam;Joo, Koan-Sik
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.337-343
    • /
    • 2016
  • This study conducted the gamma ray spectroscopic analysis of the microcolumnar CsI:Tl deposited onto the SiPMs using thermal evaporation deposition. The SEM measured thickness of microcolumnar CsI:Tl and of its individual columns. From the SEM observation, the measured thickness of CsI:Tl were $450{\mu}m$ and $600{\mu}m$. The gamma ray spectroscopic properties of microcolumnar CsI:Tl, $450{\mu}m$ and $600{\mu}m$ thick deposited onto the SiPMs were analyzed using standard gamma ray sources $^{133}Ba$ and $^{137}Cs$. The spectroscopic analysis of microcolumnar CsI:Tl deposited onto the SiPMs included the measurements of response linearity over the $^{137}Cs$ gamma ray intensity; and gamma ray energy spectrum. Furthermore from the gamma ray spectrum measurement of $^{133}Ba$ and $^{137}Cs$, $450{\mu}m$ thick CsI:Tl showed good efficiency when measured with $^{133}Ba$ and $600{\mu}m$ thick CsI:Tl was highly efficient when measured with $^{137}Cs$.

Preliminary Study for Imaging of Therapy Region from Boron Neutron Capture Therapy (붕소 중성자 포획 치료에서 치료 영역 영상화를 위한 예비 연구)

  • Jung, Joo-Young;Yoon, Do-Kun;Han, Seong-Min;Jang, HongSeok;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • The purpose of this study was to confirm the feasibility of imaging of therapy region from the boron neutron capture therapy (BNCT) using the measurement of the prompt gamma ray depending on the neutron flux. Through the Monte Carlo simulation, we performed the verification of physical phenomena from the BNCT; (1) the effects of neutron according to the existence of boron uptake region (BUR), (2) the internal and external measurement of prompt gamma ray dose, (3) the energy spectrum by the prompt gamma ray. All simulation results were deducted using the Monte Carlo n-particle extended (MCNPX, Ver.2.6.0, Los Alamos National Laboratory, Los Alamos, NM, USA) simulation tool. The virtual water phantom, thermal neutron source, and BURs were simulated using the MCNPX. The energy of the thermal neutron source was defined as below 1 eV with 2,000,000 n/sec flux. The prompt gamma ray was measured with the direction of beam path in the water phantom. The detector material was defined as the lutetium-yttrium oxyorthosilicate (Lu0,6Y1,4Si0,5:Ce; LYSO) scintillator with lead shielding for the collimation. The BUR's height was 5 cm with the 28 frames (bin: 0.18 cm) for the dose calculation. The neutron flux was decreased dramatically at the shallow region of BUR. In addition, the dose of prompt gamma ray was confirmed at the 9 cm depth from water surface, which is the start point of the BUR. In the energy spectrum, the prompt gamma ray peak of the 478 keV was appeared clearly with full width at half maximum (FWHM) of the 41 keV (energy resolution: 8.5%). In conclusion, the therapy region can be monitored by the gamma camera and single photon emission computed tomography (SPECT) using the measurement of the prompt gamma ray during the BNCT.

Nonthermal Radiation from Supernova Remnant Shocks

  • Kang, Hyesung
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.133-140
    • /
    • 2013
  • Most of high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) at supernova remnants (SNRs) within the Galaxy. Fortunately, nonthermal emissions from CR protons and electrons can provide direct observational evidence for such a model and place strong constraints on the complex nonlinear plasma processes in DSA theory. In this study we calculate the energy spectra of CR protons and electrons in Type Ia SNRs, using time-dependent DSA simulations that incorporate phenomenological models for some wave-particle interactions. We demonstrate that the time-dependent evolution of the self-amplified magnetic fields, Alfv$\acute{e}$nic drift, and escape of the highest energy particles affect the energy spectra of accelerated protons and electrons, and so resulting nonthermal radiation spectrum. Especially, the spectral cutoffs in X-ray and ${\gamma}$-ray emission spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. Thus detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations of SNRs are crucial in testing the SNR hypothesis for the origin of Galactic cosmic rays.

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.