DOI QR코드

DOI QR Code

Nonthermal Radiation from Supernova Remnant Shocks

  • Kang, Hyesung (Department of Earth Sciences, Pusan National University)
  • Received : 2012.11.30
  • Accepted : 2012.12.31
  • Published : 2013.09.15

Abstract

Most of high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) at supernova remnants (SNRs) within the Galaxy. Fortunately, nonthermal emissions from CR protons and electrons can provide direct observational evidence for such a model and place strong constraints on the complex nonlinear plasma processes in DSA theory. In this study we calculate the energy spectra of CR protons and electrons in Type Ia SNRs, using time-dependent DSA simulations that incorporate phenomenological models for some wave-particle interactions. We demonstrate that the time-dependent evolution of the self-amplified magnetic fields, Alfv$\acute{e}$nic drift, and escape of the highest energy particles affect the energy spectra of accelerated protons and electrons, and so resulting nonthermal radiation spectrum. Especially, the spectral cutoffs in X-ray and ${\gamma}$-ray emission spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. Thus detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations of SNRs are crucial in testing the SNR hypothesis for the origin of Galactic cosmic rays.

Keywords

References

  1. Abdo AA, Ackermann M, Ajello M, Allafort A, Baldini L, et al., Fermi-Lat Discovery of GeV Gamma-Ray Emission from the Young Supernova Remnant Cassiopeia A, ApJ, 710, L92-L97 (2010). http://dx.doi.org/10.1088/2041-8205/710/1/L92
  2. Acciari VA, Aliu E, Arlen T, Aune T, Beilicke M, et al., Discovery of TeV Gamma-ray Emission from Tycho's Supernova Remnant, ApJ, 730, L20-L25 (2011). http://dx.doi.org/10.1088/2041-8205/730/2/L20
  3. Ave M, Boyle PJ, Hoeppner C, Marshall J, Mueller D, Propagation and source energy spectra of cosmic ray nuclei at high energies, ApJ, 697, 106-114 (2009). http://dx.doi.org/10.1088/0004-637X/697/1/106
  4. Bamba A, Yamazaki R, Ueno M, Koyama K, Small-Scale Structure of the SN 1006 Shock with Chandra Observations, ApJ, 589, 827-837 (2003). http://dx.doi.org/10.1086/374687
  5. Bell AR, The Acceleration of Cosmic Rays in Shock Fronts. I, MNRAS, 182, 147-156 (1978). https://doi.org/10.1093/mnras/182.2.147
  6. Bell AR, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays, MNRAS, 353, 550-558 (2004). http://dx.doi.org/10.1111/j.1365-2966.2004.08097.x
  7. Berezhko EG, Ksenofontov LT, Voelk, HJ., Cosmic ray acceleration parameters from multi-wavelength obser vat ions. The case of SN 1006, A&A, 505, 169-176 (2009). http://dx.doi.org/10.1051/0004-6361/200911948
  8. Blandford RD, Eichler D, Particle Acceleration at Astrophysical Shocks - a Theory of Cosmic-Ray Origin, Phys. Rept., 154, 1 (1987). http://dx.doi.org/10.1016/0370-1573(87)90134-7
  9. Bykov AM, Osipov SM, Ellison DC, Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability, MNRAS, 410, 39-52 (2011). http://dx.doi.org/10.1111/j.1365-2966.2010.17421.x
  10. Caprioli D, Understanding hadronic gamma-ray emission from supernova remnants, JCAP, 5, 26 (2011). http://dx.doi.org/10.1088/1475-7516/2011/05/026
  11. Caprioli D, Cosmic-ray acceleration in supernova remnants: non-linear theory revised, JCAP, 7, 38 (2012). http://dx.doi.org/10.1088/1475-7516/2012/07/038
  12. Drury LO'C, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rep. Prog. Phys., 46, 973-1027 (1983). http://dx.doi.org/10.1088/0034-4885/46/8/002
  13. Edmon PP, Kang H, Jones TW, Ma R, Non-thermal radiation from Type Ia supernova remnants, MNRAS, 414, 3521-3536 (2011). http://dx.doi.org/10.1111/j.1365-2966.2011.18652.x
  14. Gargate L, Spitkovsky A, Ion Acceleration in Non-relativistic Astrophysical Shocks, ApJ, 744, 67-81 (2012). http://dx.doi.org/10.1088/0004-637X/744/1/67
  15. Giordano F, Naumann MG, Ballet J, Bechtol K , Funk S, et al., Fermi Large Area Telescope Detection of the Young Supernova Remnant Tycho, ApJ, 744, L2-L6 (2012). http://dx.doi.org/10.1088/2041-8205/744/1/L2
  16. Guo F, Jokipii JR, Kota J, Particle Acceleration by Collisionless Shocks Containing Large-scale Magneticfield Variations, ApJ, 725, 128-133 (2010). http://dx.doi.org/10.1088/0004-637X/725/1/128
  17. Hillas AM, TOPICAL REVIEW: Can diffusive shock acceleration in supernova remnants account for highenergy galactic cosmic rays?, J. Phys. G: Nucl. Part. Phys., 31, R95 (2005). http://dx.doi.org/10.1088/0954-3899/31/5/R02
  18. Jones TW, Alfven wave transport effects in the time evolution of parallel cosmic-ray-modified shocks, ApJ, 413, 619-632, (1993). http://dx.doi.org/10.1086/173031
  19. Kang H, Cosmic Ray Spectrum in Supernova Remnant Shocks, JKAS, 43, 25-39 (2010). https://doi.org/10.5303/JKAS.2010.43.2.025
  20. Kang H, Diffusive Shock Acceleration with Magnetic Field Amplification and Alfvenic Drift, JKAS, 45, 127-138 (2012).
  21. Kang H, Edmon PP, Jones JW, Nonthermal Radiation from Cosmic-Ray Modified Shocks, ApJ, 745, 146-159 (2012). http://dx.doi.org/10.1088/0004-637X/745/2/146
  22. Kang H, Jones TW, Numerical studies of diffusive shock acceleration at spherical shocks, Astropart. Phys, 25, 246-258 (2006). http://dx.doi.org/10.1016/j.astropartphys.2006.02.006
  23. Kang H, Jones TW, Gieseler UDJ, Numerical Studies of Cosmic-Ray Injection and Acceleration, ApJ, 579, 337-358 (2002). http://dx.doi.org/10.1086/342724
  24. Lee S, Ellison DC, Nagataki S, A Generalized Model of Nonlinear Diffusive Shock Acceleration Coupled to an Evolving Supernova Remnant, ApJ, 750, 156-168 (2012). http://dx.doi.org/10.1088/0004-637X/750/2/156
  25. Lucek SG, Bell AR, Non-linear amplification of a magnetic field driven by cosmic ray streaming, MNRAS, 314, 65-74 (2000). http://dx.doi.org/10.1046/j.1365-8711.2000.03363.x
  26. Malkov MA, Drury LO'C, Nonlinear Theory of Diffusive Acceleration of Particles by Shock Waves, Rep. Progr. Phys., 64, 429-481 (2001). http://dx.doi.org/10.1088/0034-4885/64/4/201
  27. Morlino G, Caprioli D, Strong evidence for hadron acceleration in Tycho's supernova remnant, Tycho, theoretical fit, Alfven drift, A&A, 538, 81-94 (2012). http://dx.doi.org/10.1051/0004-6361/201117855
  28. Parizot E, Marcowith A, Ballet J, Gallant YA, Observational Constraints on Energetic Particle Diffusion in Young Supernovae Remnants: Amplified Magnetic Field and Maximum Energy, A&A, 453, 387-395 (2006). http://dx.doi.org/10.1051/0004-6361:20064985
  29. Ptuskin VS, Zirakashvili VN, On the spectrum of high-energy cosmic rays produced by supernova remnants in the presence of strong cosmic-ray streaming instability and wave dissipation, A&A, 429, 755-765 (2005). http://dx.doi.org/10.1051/0004-6361:20041517
  30. Riquelme MA, Spitkovsky A, Nonlinear Study of Bell's Cosmic Ray Current-Driven Instability, ApJ, 694, 626-642 (2009). http://dx.doi.org/10.1088/0004-637X/694/1/626
  31. Riquelme MA, Spitkovsky A, Magnetic Amplification by Magnetized Cosmic Rays in Supernova Remnant Shocks, ApJ, 717, 1054-1066 (2010). http://dx.doi.org/10.1088/0004-637X/717/2/1054
  32. Reynolds SP, Supernova Remnants at High Energy, ARAA, 46, 89-126 (2008). http://dx.doi.org/10.1146/annurev.astro.46.060407.145237
  33. Reynolds SP, Gaensler BM, Bocchino F, Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae, Space Science Reviews, 166, 231-261 (2012). http://dx.doi.org/10.1007/s11214-011-9775-y
  34. Rogachevskii I, Kleeorin N, Brandenburg A, Eichler D, Cosmic-Ray current-driven turbulence and mean-field dynamo effect, ApJ, 753, 6-22 (2012). http://dx.doi.org/10.1088/0004-637X/753/1/6
  35. Schure KM, Bell AR, Drury LO'C, Bykov AM, Diffusive Shock Acceleration and Magnetic Field Amplification, Space Sci. Rev., 173, 491-519 (2012). http://dx.doi.org/10.1007/s11214-012-9871-7
  36. Skilling J, Cosmic Ray Streaming. I - Effect of Alfven Waves on Particles, MNRAS, 172, 557-566 (1975). https://doi.org/10.1093/mnras/172.3.557
  37. Zirakashvili VN, Ptuskin VS, Diffusive Shock Acceleration with Magnetic Amplification by Nonresonant Streaming Instability in Supernova Remnants, ApJ, 678, 939-949 (2008). http://dx.doi.org/10.1086/529580
  38. Zirakashvili VN, Ptuskin VS, Numerical simulations of diffusive shock acceleration in SNRs, Astropart. Phys., 39, 12-21 (2012). http://dx.doi.org/10.1016/j.astropartphys.2011.09.003

Cited by

  1. Cosmic-ray acceleration at collisionless astrophysical shocks using Monte-Carlo simulations vol.580, 2015, https://doi.org/10.1051/0004-6361/201525907