• 제목/요약/키워드: Galerkin Method

검색결과 827건 처리시간 0.023초

비선형성을 고려한 각가속도를 갖는 유연 회전원판의 동적 해석 (Dynamic Analysis of a Flexible Spinning Disk with Angular Acceleration Considering Nonlinearity)

  • 정진태;정두한
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.806-812
    • /
    • 1999
  • Dynamic behaviors are analyzed for a flexble spinning disk with angular acceleration, considering geometric nonlinearity. Based upon the Kirchhoff plate theory and the von Karman strain theory, the nonlinear governing equations are derived which are coupled equations with the in-plane and out-of-planedisplacements. The governing equations are discretized by using the Galerkin approximation. With the discretized nonlinear equations, the time responses are computed by using the generalized-$\alpha$ method and the Newton-Raphson method. The analysis shows that the existence of angular acceleration increases the displacements of the spinning disk and makes the disk unstable.

  • PDF

Free Vibration and Dynamic Response Analysis by Petrov-Galerkin Natural Element Method

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1881-1890
    • /
    • 2006
  • In this paper, a Petrov-Galerkin natural element method (PG-NEM) based upon the natural neighbor concept is presented for the free vibration and dynamic response analyses of two-dimensional linear elastic structures. A problem domain is discretized with a finite number of nodes and the trial basis functions are defined with the help of the Voronoi diagram. Meanwhile, the test basis functions are supported by Delaunay triangles for the accurate and easy numerical integration with the conventional Gauss quadrature rule. The numerical accuracy and stability of the proposed method are verified through illustrative numerical tests.

NUMERICAL MODELING OF TWO-DIMENSIONAL ADVECTION-DISPERSION IN OPEN CHANNEL

  • Lee, Myung-Eun;Kim, Young-Han;Seo, Il-Won
    • Water Engineering Research
    • /
    • 제4권1호
    • /
    • pp.45-58
    • /
    • 2003
  • Two-dimensional depth-averaged advection-dispersion equation was simulated using FEM. In the straight rectangular channel, the advection-dispersion processes are simulated so that these results can be compared with analyti-cal solutions for the transverse line injection and the point injection. In the straight domain the standard Galerkin method with the linear basis function is found to be inadequate to the advection-dispersion analysis compared to the upwind finite element scheme. The experimental data in the S-curved channel were compared with the result by the numerical model using SUPG(Streamline upwind Petrov-Galerkin) method.

  • PDF

DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS BASED ON FIRST-ORDER HYPERBOLIC SYSTEM

  • KIM, DEOKHUN;AHN, HYUNG TAEK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권4호
    • /
    • pp.173-195
    • /
    • 2021
  • A new implicit discontinuous Galerkin spectral element method (DGSEM) based on the first order hyperbolic system(FOHS) is presented for solving elliptic type partial different equations, such as the Poisson problems. By utilizing the idea of hyperbolic formulation of Nishikawa[1], the original Poisson equation was reformulated in the first-order hyperbolic system. Such hyperbolic system is solved implicitly by the collocation type DGSEM. The steady state solution in pseudo-time, which is the solution of the original Poisson problem, was obtained by the implicit solution of the global linear system. The optimal polynomial orders of 𝒪(𝒽𝑝+1)) are obtained for both the solution and gradient variables from the test cases in 1D and 2D regular grids. Spectral accuracy of the solution and gradient variables are confirmed from all test cases of using the uniform grids in 2D.

Meshless local Petrov-Galerkin method for rotating Rayleigh beam

  • Panchore, Vijay
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.607-616
    • /
    • 2022
  • In this work, the free vibration problem of a rotating Rayleigh beam is solved using the meshless Petrov-Galerkin method which is a truly meshless method. The Rayleigh beam includes rotatory inertia in addition to Euler-Bernoulli beam theory. The radial basis functions, which satisfy the Kronecker delta property, are used for the interpolation. The essential boundary conditions can be easily applied with radial basis functions. The results are obtained using six nodes within a subdomain. The results accurately match with the published literature. Also, the results with Euler-Bernoulli are obtained to compare the change in higher natural frequencies with change in the slenderness ratio (${\sqrt{A_0R^2/I_0}}$). The mass and stiffness matrices are derived where we get two stiffness matrices for the node and boundary respectively. The non-dimensional form is discussed as well.

QUADRATIC B-SPLINE GALERKIN SCHEME FOR THE SOLUTION OF A SPACE-FRACTIONAL BURGERS' EQUATION

  • Khadidja Bouabid;Nasserdine Kechkar
    • 대한수학회지
    • /
    • 제61권4호
    • /
    • pp.621-657
    • /
    • 2024
  • In this study, the numerical solution of a space-fractional Burgers' equation with initial and boundary conditions is considered. This equation is the simplest nonlinear model for diffusive waves in fluid dynamics. It occurs in a variety of physical phenomena, including viscous sound waves, waves in fluid-filled viscous elastic pipes, magneto-hydrodynamic waves in a medium with finite electrical conductivity, and one-dimensional turbulence. The proposed QBS/CNG technique consists of the Galerkin method with a function basis of quadratic B-splines for the spatial discretization of the space-fractional Burgers' equation. This is then followed by the Crank-Nicolson approach for time-stepping. A linearized scheme is fully constructed to reduce computational costs. Stability analysis, error estimates, and convergence rates are studied. Finally, some test problems are used to confirm the theoretical results and the proposed method's effectiveness, with the results displayed in tables, 2D, and 3D graphs.

확장형 완경사방정식에 기초한 Galerkin 유한요소 모형 (Galerkin Finite Element Model Based on Extended Mild-Slope Equation)

  • 정원무;이길성;박우선;채장원
    • 한국해안해양공학회지
    • /
    • 제10권4호
    • /
    • pp.174-186
    • /
    • 1998
  • 본 연구에서는 지배방정식으로 확장형 완경사방정식을 사용하고 무한요소를 이용하여 방사조건을 처리하는 Galerkin 유한요소 모형을 수립하였다. 수립된 모형의 타당성과 적용성을 입증하기 위하여 Ippen and Goda((1963)의 완전개방 직사각형 모형항만에서의 항만 공진과 Sharp(1968) 및 Chandrasekera and Cheung(1997)의 원형 천뢰상을 전파하는 파랑 변형에 대한 수치해석을 실시하였다. 수리모형실험 및 복합요소 모형에 의한 결과와의 비교를 통하여 본 모형이 급경사 지형에도 매우 양호한 결과를 제시함을 확인하였다. 마지막으로 방파제의 대안으로 고려될 수 있는 원형 해저 우물을 설정하고 이를 지나는 파의 변형 특성을 검토하였다.

  • PDF

Element-free Galerkin 방법을 이용한 적응적 균열진전해석 (Adaptive Crack Propagation Analysis with the Element-free Galerkin Method)

  • 최창근;이계희;정흥진
    • 한국전산구조공학회논문집
    • /
    • 제13권4호
    • /
    • pp.485-500
    • /
    • 2000
  • 본 논문에서는 element-free Galerkin(EFG) 방법에 기반한 적응적 정적균열진전해석기법을 제시하였다. 균열진전 매단계마다 적응적해석을 수행함으로써 전체 해석의 일관성과 정밀성을 동시에 확보할 수 있었다. 균열진전과정에 있어서의 적응적해석은 산정된 오차지표에 따라 적분을 위한 격자구조에 따라 절점을 추가하고 소거하는 과정을 통해 구현되었다. 이 때 사용된 오차지표는 원 EFG해석결과 얻어진 응력과 절점응력을 다시 투영한 응력의 차에 의해 얻어졌다. 제안된 해석기법의 타당성과 효용성을 수치예제에 의해 검증하였다. 그 결과 제안된 해석기법이 균열진전해석시 효율적으로 적용될 수 있음을 보였다.

  • PDF

Capacitance matrix method for petrov-galerkin procedure

  • Chung, Sei-Young
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.461-470
    • /
    • 1995
  • In this paper a capacitance matrix method is developed for the Poisson equation on a rectangle $$ (1-1) Lu \equiv -(u_{xx} + u_{yy} = f, (x, y) \in \Omega \equiv (0, 1) \times (0, 1) $$ with the homogeneous Dirichlet boundary condition $$ (1-2) u = 0, (x, y) \in \partial\Omega $$ where $\partial\Omega$ is the boundary of the region $\Omega$.

  • PDF

AN AUTOMATIC AUGMENTED GALERKIN METHOD FOR SINGULAR INTEGRAL EQUATIONS WITH HILBERT KERNEL

  • Abbasbandy, S.;Babolian, E.
    • Journal of applied mathematics & informatics
    • /
    • 제8권2호
    • /
    • pp.429-437
    • /
    • 2001
  • In [1, 2], described a Chebyshev series method for the numerical solution of integral equations with three automatic algorithms for computing tow regularization parameters, C/sub f/ and r. Here we describe a Fourier series expansion method for a class singular integral equations with Hilbert kernel and constant coefficients with using a new automatic algorithm.