Acknowledgement
The authors would like to express their sincere thanks to the respected anonymous referees for their valuable comments and suggestions, which have greatly improved the quality of this paper. The second author is also thankful to the General Directorate of Scientific Research and Technological Development (Ministry of Higher Education and Scientific Research, Algeria) for supporting him through a research grant (PRFU-C00L03UN250120200003).
References
- S. Abbas, M. Benchohra, and G. M. N'Guerekata, Topics in fractional differential equations, Developments in Mathematics, 27, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-4036-9
- T. Aboelenen, Local discontinuous Galerkin method for distributed-order time and space-fractional convection-diffusion and Schrodinger-type equations, Nonlinear Dyn., 92 (2018), 395-413. http://dx.doi.org/10.1007/s11071-018-4063-y
- R. A. Adams and J. J. F. Fournier, Sobolev Spaces, second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.
- A. M. Chen and F. W. Liu, A finite volume unstructured mesh method for fractional-in-space Allen-Cahn equation, Chinese Quart. J. Math., 32 (2017), 345-354. http://dx.doi.org/10.13371/j.cnki.chin.q.j.m.2017.04.002
- W. Chen, H. Sun, X. Zhang, and D. Korosak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl. 59 (2010), no. 5, 1754-1758. https://doi.org/10.1016/j.camwa.2009.08.020
- S. Doley, A. V. Kumar and L. Jino, Numerical study of the space fractional Burger's equation by using Lax-Friedrichs-implicit scheme, J. Comput. Anal. Appl., 30 (2022), 343-354. https://www.researchgate.net/publication/358221508
- V. J. Ervin, N. Heuer, and J. P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal. 45 (2007), no. 2, 572-591. https://doi.org/10.1137/050642757
- V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations 22 (2006), no. 3, 558-576. https://doi.org/10.1002/num.20112
- J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization, SIAM J. Numer. Anal. 27 (1990), no. 2, 353-384. https://doi.org/10.1137/0727022
- G. E. Karniadakis, J. S. Hesthaven, and I. Podlubny, Special issue on Fractional PDEs: theory, numerics, and applications, J. Comput. Phys. 293 (2015), 1-3. https://doi.org/10.1016/j.jcp.2015.04.007
- A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B. V., Amsterdam, 2006.
- J. Li, F. Liu, L. Feng, and I. Turner, A novel finite volume method for the Riesz space distributed-order advection-diffusion equation, Appl. Math. Model. 46 (2017), 536-553. https://doi.org/10.1016/j.apm.2017.01.065
- X. Li and C. J. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys. 8 (2010), no. 5, 1016-1051. https://doi.org/10.4208/cicp.020709.221209a
- C. Li, Z. G. Zhao, and Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl. 62 (2011), no. 3, 855-875. https://doi.org/10.1016/j.camwa.2011.02.045
- F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput. 191 (2007), no. 1, 12-20. https://doi.org/10.1016/j.amc.2006.08.162
- F. Liu, P. Zhuang, I. Turner, K. Burrage, and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model. 38 (2014), no. 15-16, 3871-3878. https://doi.org/10.1016/j.apm.2013.10.007
- K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.
- K. B. Oldham and J. Spanier, The Fractional Calculus, Mathematics in Science and Engineering, Vol. 111, Academic Press, New York, 1974.
- I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.
- P. M. Prenter, Splines and Variational Methods, Pure and Applied Mathematics, Wiley-Interscience, New York, 1975.
- Y. Qin, X. Yang, Y. Ren, Y. Xu, and W. Niazi, A Newton linearized Crank-Nicolson method for the nonlinear space fractional Sobolev equation, J. Funct. Spaces 2021, Art. ID 9979791, 11 pp. https://doi.org/10.1155/2021/9979791
- M. Qiu, D.-W. Li, and Y. Wu, Local discontinuous Galerkin method for nonlinear time-space fractional subdiffusion/superdiffusion equations, Math. Probl. Eng. 2020, Art. ID 6954239, 21 pp. https://doi.org/10.1155/2020/6954239
- S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993.
- S. J. Shen, F. Liu, V. Anh, I. Turner, and J. Chen, A novel numerical approximation for the space fractional advection-dispersion equation, IMA J. Appl. Math. 79 (2014), no. 3, 431-444. https://doi.org/10.1093/imamat/hxs073
- S. Tang, M. S. Greene, and W. K. Liu, Two-scale mechanism-based theory of nonlinear viscoelasticity, J. Mech. Phys. Solids 60 (2012), no. 2, 199-226. https://doi.org/10.1016/j.jmps.2011.11.003
- J. A. Tenreiro Machado, M. F. Silva, R. S. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos and A. F. Galhano, Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2010), 1-34. http://dx.doi.org/10.1155/2010/639801
- J. D. Towers, The Lax-Friedrichs scheme for interaction between the inviscid Burgers equation and multiple particles, Netw. Heterog. Media 15 (2020), no. 1, 143-169. https://doi.org/10.3934/nhm.2020007
- G. Wang and H. Z. Chen, Efficient implementation and numerical analysis of finite element method for fractional Allen-Cahn equation, Math. Probl. Eng. 2019, Art. ID 7969371, 14 pp. https://doi.org/10.1155/2019/7969371
- Q. Zhang, X. Lin, K. Pan, and Y. Ren, Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg-Landau equation, Comput. Math. Appl. 80 (2020), no. 5, 1201-1220. https://doi.org/10.1016/j.camwa.2020.05.027
- Z. Zhao and Y. Zheng, Leapfrog/finite element method for fractional diffusion equation, The Scientific World Journal, 2014 (2014), 1-9. http://dx.doi.org/10.1155/2014/982413
- Y. Zheng, C. Li, and Z. G. Zhao, A note on the finite element method for the space-fractional advection diffusion equation, Comput. Math. Appl. 59 (2010), no. 5, 1718-1726. https://doi.org/10.1016/j.camwa.2009.08.071