DOI QR코드

DOI QR Code

QUADRATIC B-SPLINE GALERKIN SCHEME FOR THE SOLUTION OF A SPACE-FRACTIONAL BURGERS' EQUATION

  • Khadidja Bouabid (Research Laboratory: Differential Equations Department of Mathematics Faculty of Exact Sciences University Freres Mentouri - Constantine 1) ;
  • Nasserdine Kechkar (Department of Mathematics Faculty of Exact Sciences University Freres Mentouri - Constantine 1)
  • Received : 2023.01.06
  • Accepted : 2024.03.19
  • Published : 2024.07.01

Abstract

In this study, the numerical solution of a space-fractional Burgers' equation with initial and boundary conditions is considered. This equation is the simplest nonlinear model for diffusive waves in fluid dynamics. It occurs in a variety of physical phenomena, including viscous sound waves, waves in fluid-filled viscous elastic pipes, magneto-hydrodynamic waves in a medium with finite electrical conductivity, and one-dimensional turbulence. The proposed QBS/CNG technique consists of the Galerkin method with a function basis of quadratic B-splines for the spatial discretization of the space-fractional Burgers' equation. This is then followed by the Crank-Nicolson approach for time-stepping. A linearized scheme is fully constructed to reduce computational costs. Stability analysis, error estimates, and convergence rates are studied. Finally, some test problems are used to confirm the theoretical results and the proposed method's effectiveness, with the results displayed in tables, 2D, and 3D graphs.

Keywords

Acknowledgement

The authors would like to express their sincere thanks to the respected anonymous referees for their valuable comments and suggestions, which have greatly improved the quality of this paper. The second author is also thankful to the General Directorate of Scientific Research and Technological Development (Ministry of Higher Education and Scientific Research, Algeria) for supporting him through a research grant (PRFU-C00L03UN250120200003).

References

  1. S. Abbas, M. Benchohra, and G. M. N'Guerekata, Topics in fractional differential equations, Developments in Mathematics, 27, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-4036-9
  2. T. Aboelenen, Local discontinuous Galerkin method for distributed-order time and space-fractional convection-diffusion and Schrodinger-type equations, Nonlinear Dyn., 92 (2018), 395-413. http://dx.doi.org/10.1007/s11071-018-4063-y
  3. R. A. Adams and J. J. F. Fournier, Sobolev Spaces, second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.
  4. A. M. Chen and F. W. Liu, A finite volume unstructured mesh method for fractional-in-space Allen-Cahn equation, Chinese Quart. J. Math., 32 (2017), 345-354. http://dx.doi.org/10.13371/j.cnki.chin.q.j.m.2017.04.002
  5. W. Chen, H. Sun, X. Zhang, and D. Korosak, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl. 59 (2010), no. 5, 1754-1758. https://doi.org/10.1016/j.camwa.2009.08.020
  6. S. Doley, A. V. Kumar and L. Jino, Numerical study of the space fractional Burger's equation by using Lax-Friedrichs-implicit scheme, J. Comput. Anal. Appl., 30 (2022), 343-354. https://www.researchgate.net/publication/358221508
  7. V. J. Ervin, N. Heuer, and J. P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal. 45 (2007), no. 2, 572-591. https://doi.org/10.1137/050642757
  8. V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differential Equations 22 (2006), no. 3, 558-576. https://doi.org/10.1002/num.20112
  9. J. G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization, SIAM J. Numer. Anal. 27 (1990), no. 2, 353-384. https://doi.org/10.1137/0727022
  10. G. E. Karniadakis, J. S. Hesthaven, and I. Podlubny, Special issue on Fractional PDEs: theory, numerics, and applications, J. Comput. Phys. 293 (2015), 1-3. https://doi.org/10.1016/j.jcp.2015.04.007
  11. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B. V., Amsterdam, 2006.
  12. J. Li, F. Liu, L. Feng, and I. Turner, A novel finite volume method for the Riesz space distributed-order advection-diffusion equation, Appl. Math. Model. 46 (2017), 536-553. https://doi.org/10.1016/j.apm.2017.01.065
  13. X. Li and C. J. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys. 8 (2010), no. 5, 1016-1051. https://doi.org/10.4208/cicp.020709.221209a
  14. C. Li, Z. G. Zhao, and Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl. 62 (2011), no. 3, 855-875. https://doi.org/10.1016/j.camwa.2011.02.045
  15. F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput. 191 (2007), no. 1, 12-20. https://doi.org/10.1016/j.amc.2006.08.162
  16. F. Liu, P. Zhuang, I. Turner, K. Burrage, and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model. 38 (2014), no. 15-16, 3871-3878. https://doi.org/10.1016/j.apm.2013.10.007
  17. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.
  18. K. B. Oldham and J. Spanier, The Fractional Calculus, Mathematics in Science and Engineering, Vol. 111, Academic Press, New York, 1974.
  19. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.
  20. P. M. Prenter, Splines and Variational Methods, Pure and Applied Mathematics, Wiley-Interscience, New York, 1975.
  21. Y. Qin, X. Yang, Y. Ren, Y. Xu, and W. Niazi, A Newton linearized Crank-Nicolson method for the nonlinear space fractional Sobolev equation, J. Funct. Spaces 2021, Art. ID 9979791, 11 pp. https://doi.org/10.1155/2021/9979791
  22. M. Qiu, D.-W. Li, and Y. Wu, Local discontinuous Galerkin method for nonlinear time-space fractional subdiffusion/superdiffusion equations, Math. Probl. Eng. 2020, Art. ID 6954239, 21 pp. https://doi.org/10.1155/2020/6954239
  23. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, translated from the 1987 Russian original, Gordon and Breach, Yverdon, 1993.
  24. S. J. Shen, F. Liu, V. Anh, I. Turner, and J. Chen, A novel numerical approximation for the space fractional advection-dispersion equation, IMA J. Appl. Math. 79 (2014), no. 3, 431-444. https://doi.org/10.1093/imamat/hxs073
  25. S. Tang, M. S. Greene, and W. K. Liu, Two-scale mechanism-based theory of nonlinear viscoelasticity, J. Mech. Phys. Solids 60 (2012), no. 2, 199-226. https://doi.org/10.1016/j.jmps.2011.11.003
  26. J. A. Tenreiro Machado, M. F. Silva, R. S. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos and A. F. Galhano, Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2010), 1-34. http://dx.doi.org/10.1155/2010/639801
  27. J. D. Towers, The Lax-Friedrichs scheme for interaction between the inviscid Burgers equation and multiple particles, Netw. Heterog. Media 15 (2020), no. 1, 143-169. https://doi.org/10.3934/nhm.2020007
  28. G. Wang and H. Z. Chen, Efficient implementation and numerical analysis of finite element method for fractional Allen-Cahn equation, Math. Probl. Eng. 2019, Art. ID 7969371, 14 pp. https://doi.org/10.1155/2019/7969371
  29. Q. Zhang, X. Lin, K. Pan, and Y. Ren, Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg-Landau equation, Comput. Math. Appl. 80 (2020), no. 5, 1201-1220. https://doi.org/10.1016/j.camwa.2020.05.027
  30. Z. Zhao and Y. Zheng, Leapfrog/finite element method for fractional diffusion equation, The Scientific World Journal, 2014 (2014), 1-9. http://dx.doi.org/10.1155/2014/982413
  31. Y. Zheng, C. Li, and Z. G. Zhao, A note on the finite element method for the space-fractional advection diffusion equation, Comput. Math. Appl. 59 (2010), no. 5, 1718-1726. https://doi.org/10.1016/j.camwa.2009.08.071