• Title/Summary/Keyword: Galerkin Finite Element Method

Search Result 248, Processing Time 0.02 seconds

Galerkin Finite Element Model Based on Extended Mild-Slope Equation (확장형 완경사방정식에 기초한 Galerkin 유한요소 모형)

  • 정원무;이길성;박우선;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.174-186
    • /
    • 1998
  • A Galerkin's finite element model incorporating infinite elements for modeling of radiation condition at infinity has been developed, which is based on an extended mild-slope equation. To illustrate the validity and applicability of the present model, the example analyses were carried out for a resonance problem in the rectangular harbor of Ippen and Goda (1963) and for wave transformations over circular shoals of Sharp (1968) and Chandrasekera and Cheung (1997). Comparisons with the results obtained by hydraulic experiments and hybrid element method showed that the present model gives very good results in spite of the rapidly varying topography. Numerical experiments were also performed for wave transformations over a circular concave well which may be an alternative to conventional wave barriers.

  • PDF

Optimal Test Function Petrov-Galerkin Method (최적시행함수 Petrov-Galerkin 방법)

  • Sung-Uk Choi
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.599-612
    • /
    • 1998
  • Numerical analysis of convection-dominated transport problems are challenging because of dual characteristics of the governing equation. In the finite element method, a strategy is to modify the test function to weight more in the upwind direction. This is called as the Petrov-Galerkin method. In this paper, both N+1 and N+2 Petrov-Galerkin methods are applied to transport problems at high grid Peclet number. Frequency fitting algorithm is used to obtain optimal levels of N+2 upwinding, and the results are discussed. Also, a new Petrov-Galerkin method, named as "Optimal Test Function Petrov-Galerkin Method," is proposed in this paper. The test function of this numerical method changes its shape depending upon relative strength of the convection to the diffusion. A numerical experiment is carried out to demonstrate the performance of the proposed method.

  • PDF

Finite-Element Method Analysis in Eigenmode of Microwave and Optical Waveguides (마이크로파 및 광도파관의 고유모드에 관한 유한요소법 해석)

  • 강길범;윤대일;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.4
    • /
    • pp.321-328
    • /
    • 1989
  • The propagation characteristics of dielectric waveguides has been analyzed by finite element method. We have proposed the finite element formutation of the variational expression in the three-component magnetic field based on Galerkin's method which seek for the propagation constant by a given value of frequency. In this approach, the divergence relation for H is satisfied and spurious modes does not appear and finite element solustions agree with the exact solutions. In order to varify the validity of the present method the numerical results for a rectangular waveguide partilly filled with dielectric are compared with other results.

  • PDF

Analysis of Thermal flow Field Uing Equal Order Linear Finite Element and Fractional Step Method (동차선형 유한요소와 Fractional Step방법을 이용한 열유동장의 해석)

  • ;;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2667-2677
    • /
    • 1995
  • A new numerical algorithm using equal order linear finite element and fractional step method has been developed which is capable of analyzing unsteady fluid flow and heat transfer problems. Streamline Upwind Petrov-Galerkin (SUPG) method is used for the weighted residual formulation of the Navier-Stokes equations. It is shown that fractional step method, in which pressure term is splitted from the momentum equation, reduces computer memory and computing time. In addition, since pressure equation is derived without any approximation procedure unlike in the previously developed SIMPLE algorithm based FEM codes, the present numerical algorithm gives more accurate results than them. The present algorithm has been applied preferentially to the well known bench mark problems associated with steady flow and heat transfer, and proves to be more efficient and accurate.

Development of Finite Element Method for the Extended Boussinesq Equations (확장형 Boussinesq 방정식의 유한요소모형 개발)

  • Woo, Seung-Buhm;Choi, Young-Kwang;Yoon, Byung-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.133-141
    • /
    • 2007
  • A finite element model is developed for the extended Boussinesq equations that is capable of simulating the dynamics of long and short waves. Galerkin weighted residual method and the introduction of auxiliary variables for 3rd spatial derivative terms in the governing equations are used for the model development. The Adams-Bashforth-Moulton Predictor Corrector scheme is used as a time integration scheme for the extended Boussinesq finite element model so that the truncation error would not produce any non-physical dispersion or dissipation. This developed model is applied to the problems of solitary wave propagation. Predicted results is compared to available analytical solutions and laboratory measurements. A good agreement is observed.

ERROR ESTIMATES FOR A GALERKIN METHOD FOR A COUPLED NONLINEAR SCHRÖDINGER EQUATIONS

  • Omrani, Khaled;Rahmeni, Mohamed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.219-244
    • /
    • 2020
  • In this paper, we approximate the solution of the coupled nonlinear Schrödinger equations by using a fully discrete finite element scheme based on the standard Galerkin method in space and implicit midpoint discretization in time. The proposed scheme guarantees the conservation of the total mass and the energy. First, a priori error estimates for the fully discrete Galerkin method is derived. Second, the existence of the approximated solution is proved by virtue of the Brouwer fixed point theorem. Moreover, the uniqueness of the solution is shown. Finally, convergence orders of the fully discrete Crank-Nicolson scheme are discussed. The end of the paper is devoted to some numerical experiments.

The Petrov-Galerkin Natural Element Method : II. Linear Elastostatic Analysis (페트로프-갤러킨 자연요소법 : II. 선형 정탄성 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 2005
  • In order to resolve a common numerical integration inaccuracy of meshfree methods, we introduce an improved natural clement method called Petrov-Galerkin natural element method(PG-NEM). While Laplace basis function is being taken for the trial shape function, the test shape function in the present method is differently defined such that its support becomes a union of Delaunay triangles. This approach eliminates the inconsistency of tile support of integrand function with the regular integration domain, and which preserves both simplicity and accuracy in the numerical integration. In this paper, the validity of the PG-NEM is verified through the representative benchmark problems in 2-d linear elasticity. For the comparison, we also analyze the problems using the conventional Bubnov-Galerkin natural element method(BG-NEM) and constant strain finite clement method(CS-FEM). From the patch test and assessment on convergence rate, we can confirm the superiority of the proposed meshfree method.

A REDUCED-ORDER MODELLING FOR ROSENAU-RLW EQUATION WITH B-SPLINE GALERKIN FINITE ELEMENT METHOD

  • Jia, Li-Jiao;Piao, Guang-Ri
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.261-280
    • /
    • 2019
  • We apply a reduced-order method based on B-spline Galerkin finite elements formulation to Rosenau-RLW equation for the first time and explain their process in detail. The ensemble of snapshots is very large generally, and it is difficult to apply POD to the ensemble of snapshots directly. Hence, we try to pick up important snapshots among the whole data. In this paper, we represent three different reduced-order schemes. First, the classical POD technique is examined. Second, (equally sampled snapshots) are exploited for POD technique. Finally, afterward sampling snapshots by CVT, for those snapshots, POD technique is implemented again.

Finite Element Solution of Ordinary Differential Equation by the Discontinuous Galerkin Method (불연속 갤러킨 방법에 의한 상미분방정식의 유한요소해석)

  • 김지경
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.83-88
    • /
    • 1993
  • A time-discontinuous Galerkin method based upon using a finite element formulation in time has evolved. This method, working from the differential equation viewpoint, is different from those which have been generally used. They admit discontinuities with respect to the time variable at each time step. In particular, the elements can be chosen arbitrarily at each time step with no connection with the elements corresponding to the previous step. Interpolation functions and weighting functions are taken to be discontinuous across inter-element boundaries. These methods lead to a unconditional stable higher-order accurate ordinary differential equation solver.

  • PDF

FINITE ELEMENT ANALYSIS OF LEVEL SET FORMULATION (유한요소법을 이용한 level set 공식화의 해석)

  • Choi, H.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.223-227
    • /
    • 2009
  • In the present study, a least square weighted residual method and Taylor-Galerkin method were formulated and tested for the discretization of the two hyperbolic type equations of level set method; advection and reinitialization equations. The two approaches were compared by solving a time reversed vortex flow and three-dimensional broken dam flow by employing a four-step splitting finite element method for the solution of the incompressible Navier-Stokes equations. From the numerical experiments, it was shown that the least square method is more accurate and conservative than Taylor-Galerkin method and both methods are approximately first order accurate when both advection and reinitialization phase are involved in the evolution of free surface.

  • PDF