DOI QR코드

DOI QR Code

A REDUCED-ORDER MODELLING FOR ROSENAU-RLW EQUATION WITH B-SPLINE GALERKIN FINITE ELEMENT METHOD

  • Received : 2018.09.13
  • Accepted : 2018.12.27
  • Published : 2019.08.15

Abstract

We apply a reduced-order method based on B-spline Galerkin finite elements formulation to Rosenau-RLW equation for the first time and explain their process in detail. The ensemble of snapshots is very large generally, and it is difficult to apply POD to the ensemble of snapshots directly. Hence, we try to pick up important snapshots among the whole data. In this paper, we represent three different reduced-order schemes. First, the classical POD technique is examined. Second, (equally sampled snapshots) are exploited for POD technique. Finally, afterward sampling snapshots by CVT, for those snapshots, POD technique is implemented again.

Keywords

References

  1. N. Atouani and K. Omrani, Galerkin finite element method for the Rosenau-RLW equation, Comput. Math. Appl., 66 (2013), 289-303. https://doi.org/10.1016/j.camwa.2013.04.029
  2. T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A, 272 (1972), 47-78. https://doi.org/10.1098/rsta.1972.0032
  3. J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 278 (1975), 555-601.
  4. J. Burkardt, M. Gunzburger, and H.-C. Lee, Centroidal Voronoi tessellation-based reduced-order modeling of complex systems, SIAM J. Sci. Comput., 28 (2006), 459-484. https://doi.org/10.1137/5106482750342221x
  5. J. Burkardt, M. Gunzburger, and H.-C. Lee, POD and CVT-based reduced-order modeling of NavierStokes flows, Comput. Method Appl. M., 196 (2006), 337-355. https://doi.org/10.1016/j.cma.2006.04.004
  6. Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi tessellations: Applications and algorithms, SIAM rev., 41 (1999), 637-676. https://doi.org/10.1137/S0036144599352836
  7. Q. Du and M. Gunzburger, Centroidal Voronoi tessellation based proper orthogonal decomposition analysis, In: W. Desch, F. Kappel and K. Kunisch (ed.), Control and Estimation of Distributed Parameter Systems, International Conference in Maria Trost (Austria), 137-150, 2001.
  8. G. H. Golub and C. F. Van Loan, Matrix Computations, Vol. 3. JHU Press, 2012.
  9. L. Ju, Q. Du, and M. Gunzburger, Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations, Parallel Comput., 28 (2002),1477-1500. https://doi.org/10.1016/S0167-8191(02)00151-5
  10. K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition, J. Optim. Theory Appl., 102 (1999), 345-371. https://doi.org/10.1023/A:1021732508059
  11. H.-C. Lee, S.-W. Lee, and G.-R. Piao, Reduced-order modeling of burgers equations based on centroidal Voronoi tessellation, Int. J. Numer. Anal. Model, 4 (2007), 559-583.
  12. H.-C. Lee and G.-R. Piao, Boundary feedback control of the Burgers equations by a reduced-order approach using centroidal Voronoi tessellations, J. Sci. Comput., 43 (2010), 369-387. https://doi.org/10.1007/s10915-009-9310-4
  13. Z. Luo, Y. Zhou, and X. Yang, A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation, Appl. Numer. Math., 59 (2009), 1933-1946. https://doi.org/10.1016/j.apnum.2008.12.034
  14. L. A. Medeiros and M. M. Miranda, Weak solutions for a nonlinear dispersive equation, J. Math. Anal. Appl., 59 (1977), 432-441. https://doi.org/10.1016/0022-247X(77)90071-3
  15. L. A. Medeiros and G. P. Menzala, Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation, SIAM J. Math. Anal., 8 (1977), 792-799. https://doi.org/10.1137/0508062
  16. M. M. Miranda, Weak solutions of a modified KdV equation, B. Braz. Math. Soc., 6 (1975), 57-63. https://doi.org/10.1007/BF02584872
  17. X. Pan and L. Zhang, On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation, Appl. Math. Model., 36 (2012), 3371-3378. https://doi.org/10.1016/j.apm.2011.08.022
  18. D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25 (1966), 321-330. https://doi.org/10.1017/S0022112066001678
  19. G.-R. Piao, H.-C. Lee, and J.-Y. Lee, Reduced-order approach using weighted centroidal Voronoi tessellation, J. Korean SIAM, 13 (2009), 293-305.
  20. G.-R. Piao, Q. Du, and H.-C. Lee, Adaptive CVT-based reduced-order modeling of Burgers equation, J. Korean SIAM, 13 (2009), 141-159.
  21. G.-R. Piao and H.-C. Lee, Distributed feedback control of the Benjamin-Bona-Mahony-Burgers equation by a reduced-order model, East Asian Journal on Applied Mathematics, 5 (2015), 61-74. https://doi.org/10.4208/eajam.210214.061214a
  22. G.-R. Piao, J.-Y. Lee, and G.-X. Cai, Analysis and computational method based on quadratic B-spline FEM for the Rosenau-Burgers equation, Numer. Meth. Part. D. E., 32 (2016), 877-895. https://doi.org/10.1002/num.22034
  23. P. M. Prenter, Splines and variational methods, Courier Corporation, 2008.
  24. P. Rosenau, A quasi-continuous description of a nonlinear transmission line, Physica Scripta, 34 (1986), 827-829. https://doi.org/10.1088/0031-8949/34/6B/020
  25. P. Rosenau, Dynamics of dense discrete systems high order effects, Prog. Theor. Phys., 79 (1988), 1028-1042. https://doi.org/10.1143/PTP.79.1028
  26. J.-M. Zuo, Y.-M. Zhang, T.-D. Zhang, and F. Chang, A new conservative difference scheme for the general Rosenau-RLW equation, Bound. Value Probl. 2010 (2010), 13 pages.