• Title/Summary/Keyword: Galerkin' method

Search Result 830, Processing Time 0.023 seconds

Dynamic Analysis of a Flexible Spinning Disk with Angular Acceleration Considering Nonlinearity (비선형성을 고려한 각가속도를 갖는 유연 회전원판의 동적 해석)

  • 정진태;정두한
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.806-812
    • /
    • 1999
  • Dynamic behaviors are analyzed for a flexble spinning disk with angular acceleration, considering geometric nonlinearity. Based upon the Kirchhoff plate theory and the von Karman strain theory, the nonlinear governing equations are derived which are coupled equations with the in-plane and out-of-planedisplacements. The governing equations are discretized by using the Galerkin approximation. With the discretized nonlinear equations, the time responses are computed by using the generalized-$\alpha$ method and the Newton-Raphson method. The analysis shows that the existence of angular acceleration increases the displacements of the spinning disk and makes the disk unstable.

  • PDF

Free Vibration and Dynamic Response Analysis by Petrov-Galerkin Natural Element Method

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1881-1890
    • /
    • 2006
  • In this paper, a Petrov-Galerkin natural element method (PG-NEM) based upon the natural neighbor concept is presented for the free vibration and dynamic response analyses of two-dimensional linear elastic structures. A problem domain is discretized with a finite number of nodes and the trial basis functions are defined with the help of the Voronoi diagram. Meanwhile, the test basis functions are supported by Delaunay triangles for the accurate and easy numerical integration with the conventional Gauss quadrature rule. The numerical accuracy and stability of the proposed method are verified through illustrative numerical tests.

NUMERICAL MODELING OF TWO-DIMENSIONAL ADVECTION-DISPERSION IN OPEN CHANNEL

  • Lee, Myung-Eun;Kim, Young-Han;Seo, Il-Won
    • Water Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.45-58
    • /
    • 2003
  • Two-dimensional depth-averaged advection-dispersion equation was simulated using FEM. In the straight rectangular channel, the advection-dispersion processes are simulated so that these results can be compared with analyti-cal solutions for the transverse line injection and the point injection. In the straight domain the standard Galerkin method with the linear basis function is found to be inadequate to the advection-dispersion analysis compared to the upwind finite element scheme. The experimental data in the S-curved channel were compared with the result by the numerical model using SUPG(Streamline upwind Petrov-Galerkin) method.

  • PDF

DISCONTINUOUS GALERKIN SPECTRAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS BASED ON FIRST-ORDER HYPERBOLIC SYSTEM

  • KIM, DEOKHUN;AHN, HYUNG TAEK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.173-195
    • /
    • 2021
  • A new implicit discontinuous Galerkin spectral element method (DGSEM) based on the first order hyperbolic system(FOHS) is presented for solving elliptic type partial different equations, such as the Poisson problems. By utilizing the idea of hyperbolic formulation of Nishikawa[1], the original Poisson equation was reformulated in the first-order hyperbolic system. Such hyperbolic system is solved implicitly by the collocation type DGSEM. The steady state solution in pseudo-time, which is the solution of the original Poisson problem, was obtained by the implicit solution of the global linear system. The optimal polynomial orders of 𝒪(𝒽𝑝+1)) are obtained for both the solution and gradient variables from the test cases in 1D and 2D regular grids. Spectral accuracy of the solution and gradient variables are confirmed from all test cases of using the uniform grids in 2D.

Meshless local Petrov-Galerkin method for rotating Rayleigh beam

  • Panchore, Vijay
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.607-616
    • /
    • 2022
  • In this work, the free vibration problem of a rotating Rayleigh beam is solved using the meshless Petrov-Galerkin method which is a truly meshless method. The Rayleigh beam includes rotatory inertia in addition to Euler-Bernoulli beam theory. The radial basis functions, which satisfy the Kronecker delta property, are used for the interpolation. The essential boundary conditions can be easily applied with radial basis functions. The results are obtained using six nodes within a subdomain. The results accurately match with the published literature. Also, the results with Euler-Bernoulli are obtained to compare the change in higher natural frequencies with change in the slenderness ratio (${\sqrt{A_0R^2/I_0}}$). The mass and stiffness matrices are derived where we get two stiffness matrices for the node and boundary respectively. The non-dimensional form is discussed as well.

QUADRATIC B-SPLINE GALERKIN SCHEME FOR THE SOLUTION OF A SPACE-FRACTIONAL BURGERS' EQUATION

  • Khadidja Bouabid;Nasserdine Kechkar
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.621-657
    • /
    • 2024
  • In this study, the numerical solution of a space-fractional Burgers' equation with initial and boundary conditions is considered. This equation is the simplest nonlinear model for diffusive waves in fluid dynamics. It occurs in a variety of physical phenomena, including viscous sound waves, waves in fluid-filled viscous elastic pipes, magneto-hydrodynamic waves in a medium with finite electrical conductivity, and one-dimensional turbulence. The proposed QBS/CNG technique consists of the Galerkin method with a function basis of quadratic B-splines for the spatial discretization of the space-fractional Burgers' equation. This is then followed by the Crank-Nicolson approach for time-stepping. A linearized scheme is fully constructed to reduce computational costs. Stability analysis, error estimates, and convergence rates are studied. Finally, some test problems are used to confirm the theoretical results and the proposed method's effectiveness, with the results displayed in tables, 2D, and 3D graphs.

Galerkin Finite Element Model Based on Extended Mild-Slope Equation (확장형 완경사방정식에 기초한 Galerkin 유한요소 모형)

  • 정원무;이길성;박우선;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.174-186
    • /
    • 1998
  • A Galerkin's finite element model incorporating infinite elements for modeling of radiation condition at infinity has been developed, which is based on an extended mild-slope equation. To illustrate the validity and applicability of the present model, the example analyses were carried out for a resonance problem in the rectangular harbor of Ippen and Goda (1963) and for wave transformations over circular shoals of Sharp (1968) and Chandrasekera and Cheung (1997). Comparisons with the results obtained by hydraulic experiments and hybrid element method showed that the present model gives very good results in spite of the rapidly varying topography. Numerical experiments were also performed for wave transformations over a circular concave well which may be an alternative to conventional wave barriers.

  • PDF

Adaptive Crack Propagation Analysis with the Element-free Galerkin Method (Element-free Galerkin 방법을 이용한 적응적 균열진전해석)

  • 최창근;이계희;정흥진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.485-500
    • /
    • 2000
  • In this paper the adaptive crack propagation analysis based on the estimated local and global error in the element-free Galerkin (EFG) method is presented. It is possible to keep consistency and accuracy of analysis in each propagation step by adaptive analysis. The adaptivity analysis in crack propagation is achieved by adding and removing the node along the background integration cell that are refined or recovered as estimated error. These errors are obtained by calculating the difference between the values of the projected stresses and original EFG stresses. To evaluate the performance of proposed adaptive procedure, the convergence behavior is investigated lot several examples. The results of these examples show the efficiency of proposed scheme in crack propagation analysis.

  • PDF

Capacitance matrix method for petrov-galerkin procedure

  • Chung, Sei-Young
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.461-470
    • /
    • 1995
  • In this paper a capacitance matrix method is developed for the Poisson equation on a rectangle $$ (1-1) Lu \equiv -(u_{xx} + u_{yy} = f, (x, y) \in \Omega \equiv (0, 1) \times (0, 1) $$ with the homogeneous Dirichlet boundary condition $$ (1-2) u = 0, (x, y) \in \partial\Omega $$ where $\partial\Omega$ is the boundary of the region $\Omega$.

  • PDF

AN AUTOMATIC AUGMENTED GALERKIN METHOD FOR SINGULAR INTEGRAL EQUATIONS WITH HILBERT KERNEL

  • Abbasbandy, S.;Babolian, E.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.429-437
    • /
    • 2001
  • In [1, 2], described a Chebyshev series method for the numerical solution of integral equations with three automatic algorithms for computing tow regularization parameters, C/sub f/ and r. Here we describe a Fourier series expansion method for a class singular integral equations with Hilbert kernel and constant coefficients with using a new automatic algorithm.