• Title/Summary/Keyword: Galerkin' method

Search Result 830, Processing Time 0.03 seconds

Analysis of Dynamic Multiple-Crack Propagation Problem by Element free-Galerkin Method (무요소법을 이용한 다수균열 함유부재의 동적균열전파해석에 관한 연구)

  • 이상호;김효진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.315-322
    • /
    • 2000
  • In this study, an algorithm analyzing dynamic mutiple-crack propagation problem by Meshfree Method is proposed. A short description of Meshfree Method especially, Element-free Galerkin (EFG) method is presented and the elastodynamic fracture theory is summarized. A numerical implementation algorithm for dynamic analysis by Meshfree Method is discussed and an algorithm for mutlple-crack dynamic propagation is also presented. A couple of numerical examples of dynamic crack propagation problem illustrate the performance of the proposed technique. The accuracy of the algorithm is studied in the first example by being compared with experimental results, and the applicability and efficiency of the developed algorithm is studied in the second example.

  • PDF

Simplified dynamic analysis of slender tapered thin-walled towers with additional mass and rigidity

  • Takabatake, Hideo;Mizuki, Akira
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.61-74
    • /
    • 1995
  • A linearly tapered, doubly symmetric thin-walled closed member, such as power-transmission towers and tourist towers, are often characterized by local variation in mass and/or rigidity, due to additional mass and rigidity. On the preliminary stage of design the closed-form solution is more effective than the finite element method. In order to propose approximate solutions, the discontinuous and local variation in mass and/or rigidity is treated continuously by means of a usable function proposed by Takabatake(1988, 1991, 1993). Thus, a simplified analytical method and approximate solutions for the free and forced transverse vibrations in linear elasticity are demonstrated in general by means of the Galerkin method. The solutions proposed here are examined from the results obtained using the Galerkin method and Wilson-${\theta}$ method and from the results obtained using NASTRAN.

HIGHER ORDER GALERKIN FINITE ELEMENT METHOD FOR THE GENERALIZED DIFFUSION PDE WITH DELAY

  • LUBO, GEMEDA TOLESSA;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.603-618
    • /
    • 2022
  • In this paper, a numerical solution of the generalized diffusion equation with a delay has been obtained by a numerical technique based on the Galerkin finite element method by applying the cubic B-spline basis functions. The time discretization process is carried out using the forward Euler method. The numerical scheme is required to preserve the delay-independent asymptotic stability with an additional restriction on time and spatial step sizes. Both the theoretical and computational rates of convergence of the numerical method have been examined and found to be in agreement. As it can be observed from the numerical results given in tables and graphs, the proposed method approximates the exact solution very well. The accuracy of the numerical scheme is confirmed by computing L2 and L error norms.

THE DISCRETE SLOAN ITERATE FOR CAUCHY SINGULAR INTEGRAL EQUATIONS

  • KIM, SEKI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.81-95
    • /
    • 1998
  • The superconvergence of the Sloan iterate obtained from a Galerkin method for the approximate solution of the singular integral equation based on the use of two sets of orthogonal polynomials is investigated. The discrete Sloan iterate using Gaussian quadrature to evaluate the integrals in the equation becomes the Nystr$\ddot{o}$m approximation obtained by the same rules. Consequently, it is impossible to expect the faster convergence of the Sloan iterate than the discrete Galerkin approximation in practice.

  • PDF

EXISTENCE OF SOLUTION OF FINITE SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

  • Ohm, Mi-Ray
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.309-318
    • /
    • 1994
  • The approach presented in this paper is based on the transformation of the Stefan problem in one space dimension to an initial-boundary value problem for the heat equation in a fixed domain. Of course, the problem is non-linear. The finite element approximation adopted here is the standared continuous Galerkin method in time. In this paper, only the regular case is discussed. This means the error analysis is based on the assumption that the solution is sufficiently smooth. The aim of this paper is the existence of the solution in a finite Galerkin system of ordinary equations.

  • PDF

Examination and Improvement of Accuracy of Three-Dimensional Elastic Crack Solutions Obtained Using Finite Element Alternating Method (유한요소 교호법으로 구한 삼차원 균열 탄성해의 정확성 향상 및 검토)

  • Park, Jai-Hak;Nikishkov, G.P.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.629-635
    • /
    • 2010
  • An SGBEM (symmetric Galerkin boundary element method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. This method can be used to obtain mixed-mode stress intensity factors for planar and nonplanar three-dimensional cracks having an arbitrary shape. For field applications, however, it is necessary to verify the accuracy and consistency of this method. Therefore, in this study, we investigate the effects of several factors on the accuracy of the stress intensity factors obtained using the abovementioned alternating method. The obtained stress intensity factors are compared with the known values provided in handbooks, especially in the case of internal and external circumferential semi-elliptical surface cracks. The results show that the SGBEM-FEM alternating method yields accurate stress intensity factors for three-dimensional cracks, including internal and external circumferential surface cracks and that the method can be used as a robust crack analysis tool for solving field problems.

Analysis of Elastic-Plastic J Integrals for 3-Dimensional Cracks Using Finite Element Alternating Method (유한요소 교호법을 이용한 삼차원 균열의 탄소성 J 적분 해석)

  • Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook.

Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell

  • Ferezghi, Yaser Sadeghi;Sohrabi, Mohamadreza;Nezhad, Seyed Mojtaba Mosavi
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.679-698
    • /
    • 2020
  • In this paper, the meshless local Petrov-Galerkin (MLPG) method is developed for dynamic analysis of non-symmetric nanocomposite cylindrical shell equations of elastic wave motion with nonlinear grading patterns under shock loading. The mechanical properties of the nanocomposite cylinder are obtained based on a micro-mechanical model. In this study, four kinds of grading patterns are assumed for carbon nanotube mechanical properties. The displacements can be approximated using shape function so, the multiquadrics (MQ) Radial Basis Functions (RBF) are used as the shape function. In order to discretize the derived equations in time domains, the Newmark time approximation scheme with suitable time step is used. To demonstrate the accuracy of the present method for dynamic analysis, at the first a problem verifies with analytical solution and then the present method compares with the finite element method (FEM), finally, the present method verifies by using the element free Galerkin (EFG) method. The comparison shows the high capacity and accuracy of the present method in the dynamic analysis of cylindrical shells. The capability of the present method to dynamic analysis of non-symmetric nanocomposite cylindrical shell is demonstrated by dynamic analysis of the cylinder with different kinds of grading patterns and angle of nanocomposite reinforcements. The present method shows high accuracy, efficiency and capability to dynamic analysis of non-symmetric nanocomposite cylindrical shell, which it furnishes a ground for a more flexible design.

Analysis of TE Scattering by a Resistive Strip Grating Over a Grounded Dielectric Layer Using Point Matching Method (Point Matching Method를 이용한 접지된 유전체층 위의 저항띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.371-375
    • /
    • 2014
  • In this paper, the solutions of TE(transverse electric) scattering problems by a resistive strip grating over a grounded dielectric layer are analyzed by applying the PMM(point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential magnetic field and the induced surface current density on the resistive strip. The induced surface current density of resistive strip is obtained by difference of the up and down of the magnetic field in two boundary areas of the resistive strip. The numerical results for reflected power of zeroth order mode analyzed by according as the resistivity, the width and spacing of resistive strip, the relative permittivity and thickness of dielectric layer, and incident angles. The numerical results shown in good agreement compared to those of the existing papers using FGMM(fourier galerkin moment method).

Dynamic Behaviors of an Elastically Restrained Beam Carrying a Moving Mass

  • Ryu, Bong-Jo;Lee, Jong-Won;Yim, Kyung-Bin;Yoon, Young-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1382-1389
    • /
    • 2006
  • Dynamic responses of a simply supported beam with a translational spring carrying a moving mass are studied. Governing equations of motion including all the inertia effects of a moving mass are derived by employing the Galerkin's mode summation method, and solved by using the Runge-Kutta integral method. Numerical solutions for dynamic responses of a beam are obtained for various cases by changing parameters of the spring stiffness, the spring position, the mass ratio and the velocity ratio of a moving mass. Some experiments are conducted to verify the numerical results obtained. Experimental results for the dynamic responses of the test beam have a good agreement with numerical ones.