References
- A.M.A. Adam, E.B.M. Bashier, M.H.A. Hashim, and K.C. Patidar, Fitted Galerkin spectral method to solve delay partial differential equations, Math. Meth. Appl. Sci. 39 (2016), 3102-3115. https://doi.org/10.1002/mma.3756
- E.A. Aksan, numerical solution of burgers' equation by finite element method constructed on the method of discretization in time, Appl. Math.Comput. 170 (2005), 895-904.
- E.A. Aksan, An application of cubic B-spline Finite element method for the burgers equation, Therm. Sci. 22 (2018), 195-202. https://doi.org/10.2298/TSCI170613286A
- H. Brunner, C Collocation Methods for Volterra Integral and Related Functional Differential Equation, Cambridge university press, 2004.
- X. Chen and L. Wang, The variational iteration method for solving a neutral functionaldifferential equation with proportional delays, Comput. Math. Appl. 59 (2010), 2696-2702. https://doi.org/10.1016/j.camwa.2010.01.037
- P. Garcia, M.A. Castro, J.A. Martin and A. Sirvent, Numerical solutions of diffusion mathematical models with delay, Math. Comput. Model. 50 (2009), 860-868. https://doi.org/10.1016/j.mcm.2009.05.015
- P. Garcia, M.A. Castro, J.A. Martin and A. Sirvent, Convergence of two implicit numerical schemes for diffusion mathematical models with delay, Math. Comput. Model. 52 (2010), 1279-1287. https://doi.org/10.1016/j.mcm.2010.02.016
- Z. Jackiewicz and B. Zubik-Kowal, Spectral collocation and waveform relaxation methods for nonlinear delay partial differential equations, Appl. Numer. Math. 56 (2006), 433-443. https://doi.org/10.1016/j.apnum.2005.04.021
- J. Kongson and S. Amornsamankul, A model of the signal transduction process under a delay, EA J. Appl. Math. 7 (2017), 741-751.
- R. Kumar, A.K. Sharma, and K. Agnihotri, Dynamics of an innovation diffusion model with time delay, EA J. Appl.Math. 7 (2017), 455-481.
- D. Li and J. Wang, Unconditionally optimal error analysis of crank -nicolson galerkin fems for a strongly nonlinear parabolic system, J. Sci. Comput. 72 (2017), 892-915. https://doi.org/10.1007/s10915-017-0381-3
- D. Li, J. Zhang, Z. Zhang, Unconditionally optimal error estimates of a linearized galerkin method for nonlinear time fractional reaction subdiusion equations, J. Sci. Comput. 76 (2018), 848-866. https://doi.org/10.1007/s10915-018-0642-9
- D. Li.and J. Zhang, Effcient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain, J. Comput. 322 (2016), 415-428.
- D. Li, J. Zhang, Z. Zhang, Unconditionally optimal error estimates of a linearized galerkin method for nonlinear time fractional reaction subdiusion equations, J. Sci. Comput. 76 (2018), 848-866. https://doi.org/10.1007/s10915-018-0642-9
- H. Liang, Convergence and asymptotic stability of galerkin methods for linear parabolic equations with delays, Appl. Math. Comput. 264 (2015), 160-178. https://doi.org/10.1016/j.amc.2015.04.104
- J.A. Martin, F. Rodriguez and R. Company, Analytic solution of mixed problems for the generalized diffusion with delay, Math. Comput. Model. 40 (2004), 361-369. https://doi.org/10.1016/j.mcm.2003.10.046
- T. Ozis, A. Esen, and S. Kutluay, Numerical solution of burgers' equation by quadratic B-splinef Finite elements, Appl. Math. Comput. 165 (2005), 237-249. https://doi.org/10.1016/j.amc.2004.04.101
- E. Reyes, F. Rodriguez and J.A. Martin, Analytic-numerical solutions of diffusion mathematical models with delays, Comput. Math. Appl. 56 (2008), 743-753. https://doi.org/10.1016/j.camwa.2008.02.011
- H. Tian, Asymptotic stability analysis of the linear θ-method for linear parabolic differential equations with delay, J. Diff. Equ. Appl. 15 (2009), 473-487. https://doi.org/10.1080/10236190802128284
- V. Thomee, Galerkin finite element methods for parabolic problems, Springer Science & Business Media, 2007.
- F. Wu, D. Li, J. Wen, and J. Duan, Stability and convergence of compact finite difference method for parabolic problems with delay, Appl. Math. Comput. 322 (2018), 129-139. https://doi.org/10.1016/j.amc.2017.11.032
- Q. Zhang, M. Chen, Y. Xu, and D. Xu, Compact θ-method for the generalized delay diffusion equation, Appl. Math. Comput. 316 (2018). 357-369. https://doi.org/10.1016/j.amc.2017.08.033