• 제목/요약/키워드: GaN surface

검색결과 345건 처리시간 0.036초

A Study of Dry Etch Mechanism of the GaN using Plasma Mass Spectrometry

  • Kim, H.S.;Lee, W.J.;Jang, J.W.;Yeom, G.Y.;Lee, J.W.;Kim, T.I.
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.416-422
    • /
    • 1999
  • The characteristics of inductively coupled Cl$_2$/BCl$_3$ plasmas during the GaN etching were studied using plasma mass spectrometry by measuring the relative amounts of reactive ions, neutrals, and etch products. GaN etch rates increased with the increase of pressure and showed a maximum near 25mTorr for the pure $Cl_2$ and near 30mTorr for $Cl_2$$BCl_3$. The addition of$ BCl_3$ to $Cl_2$ also was increased GaN etch rates until 50%BCl$_3$ was mixed to $Cl_2$. The GaN etching with pure $Cl Cl_2$ appears to be related to the combination of Cl$_2^{+}$ ion bombardment and the chemical reaction of Cl radicals. In the case of the GaN etching with Cl$_2$/BCl$_3$, in addition to the combined effect of$_2^{ +}$ ions and Cl radicals, $_BCl2^{+ }$ ions appear to be responsible for some of GaN etching even though they do not have significant effect on the GaN etching compared to $Cl_2^{+}$ and Cl. $Ga^{+ }$ , $GaCl^{+}$ , $GaCl_2^{+}$ , and $N_2^{+}$ were observed as the positive ions of etch products, and the intensities of these etch products showed the same trends as those of GaN etch rate. Among the etch products, Ga and $N_2$ appear to be the main etch products.

  • PDF

고전압 응용분야를 위한 GaN 쇼트키 다이오드의 산화 공정 (Oxidation Process of GaN Schottky Diode for High-Voltage Applications)

  • 하민우;한민구;한철구
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2265-2269
    • /
    • 2011
  • 1 kV high-voltage GaN Schottky diode is realized using GaN-on-Si template by oxidizing Ni-Schottky contact. The Auger electron spectroscopy (AES) analysis revealed the formation of $NiO_x$ at the top of Schottky contact. The Schottky contact was changed to from Ni/Au to Ni/Ni-Au alloy/Au/$NiO_x$ by oxidation. Ni diffusion into AlGaN improves the Schottky interface and the trap-assisted tunneling current. In addition, the reverse leakage current and the isolation-leakage current are efficiently suppressed by oxidation. The isolation-leakage current was reduced about 3 orders of magnitudes. The reverse leakage current was also decreased from 2.44 A/$cm^2$ to 8.90 mA/$cm^2$ under -100 V-biased condition. The formed group-III oxides ($AlO_x$ and $GaO_x$) during the oxidation is thought to suppress the surface leakage current by passivating surface dangling bonds, N-vacancies and process damages.

습식식각 방법으로 제작한 패턴 형성 사파이어 기판을 가지는 GaN계 청색 LED (GaN Base Blue LED on Patterned Sapphire Substrate by Wet Etching)

  • 김도형;이용곤;유순재
    • 한국전기전자재료학회논문지
    • /
    • 제24권1호
    • /
    • pp.7-11
    • /
    • 2011
  • Sapphire substrate was patterned by a selective chemical wet etching technique, and GaN/InGaN structures were grown on this substrate by MOVPE (Metal Organic Vapor Phase Epitaxy). The surface of grown GaN on patterned sapphire substrate (PSS) has good morphology and uniformity. The patterned sapphire substrate LED showed better light output than conventional LED that improvement 50%. We think these results come from enhancement of internal quantum efficiency by decrease of threading dislocation and increase of light extraction efficiency. Also these LED showed more uniform emission distribution in angle than conventional LED.

Time Evolution of a High-temperature GaN Epilayer Grown on a Low-temperature GaN Buffer Layer using a Low-pressure MOCVD

  • Chang, Kyung-Hwa;Cho, Sung-Il;Kwon, Myoung-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권1호
    • /
    • pp.36-41
    • /
    • 2006
  • In this paper, the time evolution of undoped GaN epilayers on a low-temperature GaN buffer layer grown on c-plane sapphire at a low pressure of 300 Torr was studied via a two-step growth condition in a horizontal MOCVD reactor. As a function of the growth time at a high-temperature, the surface morphology, structural quality, and optical and electrical properties were investigated using atomic force microscopy, high-resolution x-ray diffraction, photoluminescence, and Hall effect measurement, respectively. The root-mean-square roughness showed a drastic decrease after a certain period of surface roughening probably due to the initial island growth. The surface morphology also showed the island coalescence and the subsequent suppression of three-dimensional island nucleation. The structural quality of the GaN epilayer was improved with increasing growth time considering the symmetrical (002) and asymmetrical (102) rocking curves. The variations of room-temperature photoluminescence, background carrier concentration, and Hall mobility were measured and discussed.

Ridge Formation by Dry-Etching of Pd and AlGaN/GaN Superlattice for the Fabrication of GaN Blue Laser Diodes

  • 김재관;이동민;박민주;황성주;이성남;곽준섭;이지면
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.391-392
    • /
    • 2012
  • In these days, the desire for the precise and tiny displays in mobile application has been increased strongly. Currently, laser displays ranging from large-size laser TV to mobile projectors, are commercially available or due to appear on the market [1]. In order to achieve a mobile projectors, the semiconductor laser diodes should be used as a laser source due to their size and weight. In this presentation, the continuous etch characteristics of Pd and AlGaN/GaN superlattice for the fabrication of blue laser diodes were investigated by using inductively coupled $CHF_3$ and $Cl_2$ -based plasma. The GaN laser diode samples were grown on the sapphire (0001) substrate using a metal organic chemical vapor deposition system. A Si-doped GaN layer was grown on the substrate, followed by growth of LD structures, including the active layers of InGaN/GaN quantum well and barriers layer, as shown in other literature [2], and the palladium was used as a p-type ohmic contact metal. The etch rate of AlGaN/GaN superlattice (2.5/2.5 nm for 100 periods) and n-GaN by using $Cl_2$ (90%)/Ar (10%) and $Cl_2$ (50%)/$CHF_3$ (50%) plasma chemistry, respectively. While when the $Cl_2$/Ar plasma were used, the etch rate of AlGaN/GaN superlattice shows a similar etch rate as that of n-GaN, the $Cl_2/CHF_3$ plasma shows decreased etch rate, compared with that of $Cl_2$/Ar plasma, especially for AlGaN/GaN superlattice. Furthermore, it was also found that the Pd which is deposited on top of the superlattice couldn't be etched with $Cl_2$/Ar plasma. It was indicating that the etching step should be separated into 2 steps for the Pd etching and the superlattice etching, respectively. The etched surface of stacked Pd/superlattice as a result of 2-step etching process including Pd etching ($Cl_2/CHF_3$) and SLs ($Cl_2$/Ar) etching, respectively. EDX results shows that the etched surface is a GaN waveguide free from the Al, indicating the SLs were fully removed by etching. Furthermore, the optical and electrical properties will be also investigated in this presentation. In summary, Pd/AlGaN/GaN SLs were successfully etched exploiting noble 2-step etching processes.

  • PDF

Study on Pressure-dependent Growth Rate of Catalyst-free and Mask-free Heteroepitaxial GaN Nano- and Micro-rods on Si (111) Substrates with the Various V/III Molar Ratios Grown by MOVPE

  • Ko, Suk-Min;Kim, Je-Hyung;Ko, Young-Ho;Chang, Yun-Hee;Kim, Yong-Hyun;Yoon, Jong-Moon;Lee, Jeong-Yong;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.180-180
    • /
    • 2012
  • Heteroepitaxial GaN nano- and micro-rods (NMRs) are one of the most promising structures for high performance optoelectronic devices such as light emitting diodes, lasers, solar cells integrated with Si-based electric circuits due to their low dislocation density and high surface to volume ratio. However, heteroepitaxial GaN NMRs growth using a metal-organic vapor phase epitaxy (MOVPE) machine is not easy due to their long surface diffusion length at high growth temperature of MOVPE above $1000^{\circ}C$. Recently some research groups reported the fabrication of the heteroepitaxial GaN NMRs by using MOVPE with vapor-liquid-solid (VLS) technique assisted by metal catalyst. However, in the case of the VLS technique, metal catalysts may act as impurities, and the GaN NMRs produced in this mathod have poor directionallity. We have successfully grown the vertically well aligned GaN NMRs on Si (111) substrate by means of self-catalystic growth methods with pulsed-flow injection of precursors. To grow the GaN NMRs with high aspect ratio, we veried the growth conditions such as the growth temperature, reactor pressure, and V/III molar ratio. We confirmed that the surface morphology of GaN was strongly influenced by the surface diffusion of Ga and N adatoms related to the surrounding environment during growth, and we carried out theoretical studies about the relation between the reactor pressure and the growth rate of GaN NMRs. From these results, we successfully explained the growth mechanism of catalyst-free and mask-free heteroepitaxial GaN NMRs on Si (111) substrates. Detailed experimental results will be discussed.

  • PDF

광결정 Nanocavity를 갖는 InGaN/GaN 양자우물구조의 청색 광소자 공정 및 특성평가 (Fabrications and Characterizations of InGaN/GaN Quantum Well Light Emitting Devices Including Photonic Crystal Nanocavity Structures)

  • 최재호;이정택;김근주
    • 한국전기전자재료학회논문지
    • /
    • 제22권12호
    • /
    • pp.1045-1057
    • /
    • 2009
  • The authors investigated the InGaN/GaN multi-quantum well blue light emitting devices with the implementation of the photonic crystals fabricated at the top surface of p-GaN layer and the bottom interface of n-GaN layer. The top photonic crystals result in the lattice-dependent photoluminescence spectra at the wavelength of 450 nm and however, the bottom photonic crystal shows a big shift of the photoluminescence peak from 444 nm to 394 nm. The sample with the bottom photonic crystal structure also shows the lasing effect at the wavelength of 468 nm. Furthermore, the quality enhancement for the crystal growth of GaN thin film on the bottom photonic crystal comes from the modulated compressive stress which was measured by the micro-Raman spectroscopy.

Polarity of freestanding GaN grown by hydride vapor phase epitaxy

  • Lee, Kyoyeol;Auh, Keun-Ho
    • 한국결정성장학회지
    • /
    • 제11권3호
    • /
    • pp.106-111
    • /
    • 2001
  • The freestanding GaN substrates were grown by hydride vapor phase epitaxy (HVPE) on (0001) sapphire substrate and prepared by using laser induced lift-off. After a mechanical polishing on both Ga and N-surfaces of GaN films with 100$\mu\textrm{m}$ thick, their polarities have been investigated by using chemical etching in phosphoric acid solution, 3 dimensional surface profiler and Auger electron spectroscopy (AES). The composition of the GaN film measured by AES indicted that Ga and N terminated surfaces have the different N/Ga peak ratio of 0.74 and 0.97, respectively. Ga-face and N-face of GaN revealed quite different chemical properties: the polar surfaces corresponding to (0001) plane are resistant to a phosphoric acid etching whereas N-polar surfaces corresponding to(0001) are chemically active.

  • PDF

GaN LED의 p형 반도체 투명 접촉 전극용 마그네트론 2원 동시 방전법을 통해 증착한 NiO-AZO 박막의 특성 평가 (Characteristics of AZO-NiO thin films for p-type GaN semiconductor in GaN LED TCEs by using magnetron co-sputtering methode)

  • 박희우;방준호;;송풍근
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.180-181
    • /
    • 2011
  • 기존의 GaN LED에 사용되어지고 있는 p형 GaN 반도체의 Ni/Au 투명 접촉 전극을 제조할 때 발생하는 오염과 공정을 줄이고 발광효율을 향상시킬 수 있는 투명 접촉 전극을 제작하기 위해 마그네트론 2원 동시 방전법을 사용하여 AZO-NiO 박막을 증착 하였다. Al 원자 함량에 따른 AZO-NiO 박막의 구조적, 전기적, 광학적 특성을 조사하였다.

  • PDF

구조적 변화에 따른 GaAs MESFET 제작 및 DC 특성 (DC Characteristices of GaAs MESFET with Different Physical Structures)

  • 김인호;원창섭;안형근;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.82-85
    • /
    • 2000
  • The less sensitive structure to the surface effect has been presented utiliting an undoped GaAs layer on the n-GaAs channel. The undoped layer has been found to be effective to supress the frequency dispersion phenomena caused by a surface trapping effect and to raise the MESFET's performance. The gate structure, with an undoped layer underneath the gate metal has been found to be effective to improve the breakdown voltage. GaAs MESFETS with different physical structures are fabricated and DC characteristics are measued. GaAs MESFET's are fabricated on epi-wafers which have an undoped GaAs layer in between n+ and n GaAs layers grown by MBE.

  • PDF