• Title/Summary/Keyword: GPS 기선해석

Search Result 40, Processing Time 0.022 seconds

Determination of 3-D Positions on TBMs Using the Precise GPS Data analysis SW, GAMIT/GLOBK (정밀 GPS 해석 S/W GMAIT/GLOBK를 활용한 TBM의 3차원 위치 결정)

  • Yoo, Kyung-Wan;Yang, In-Tae;Lee, Dong-Ha
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.71-76
    • /
    • 2016
  • In this study, we determined the precise coordinates of TBMs (Tidal Bench Marks), which used as the national reference points in coastal area of Korea, using a GPS data analysis SW for the academic and scientific applications, GAMIT/GLOBK. For accurate 3-D positioning of TBM locations, we performed the GPS point surveying according to the national surveying policy and also acquired the GPS data for 48 TBMs located in the western and southern coastal part of Korea. Considering the results of baseline analysis to each observation session obtained from GAMIT module, the baseline analysis was realized to be done precisely because the values of Normalized RMS (NRMS) were mostly less than ${\pm}0.20mm$. Before the network adjustment using GLOBK module, we evaluated the suitability of observations for each session by applying the chi-squared test (${\chi}^2$ test) to the degree of freedom in observed session. An overall distributions of ${\chi}^2$ test were less than 1.0 for all sessions, and the statistical of ${\chi}^2$ test showed the average, 0.267 with minimum and maximum value, 0.063 and 0.653, respectively. Finally, we analyzed the network adjustment for 48 TBMs to reduce the residuals of baseline analysis on each point by connecting with 42 permanent GPS stations in Korea. In the network adjustment procedure, we set up the weighted values of each permanent station to be allocated between 0.9 and 1.14, and also removed the observed points having residual exceeds 4-times of standard deviation ($4{\sigma}$).

  • PDF

PRELIMINARY STUDY ON THE PLATE MOTION IN KOREAN PENINSULA WITH NEW KOREAN VLBI ARRAY (우주측지 VLBI를 이용한 한반도 지각판 운동 예비 연구)

  • Kwak, Young-Hee;Sasao, Tetsuo;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.345-354
    • /
    • 2006
  • Korean Peninsula has been postulated to be on the Eurasian plate(EU). On the other hand, recent seismological works and GPS researches suggest that it is on a separate plate called the Amurian plate (AM). However, the GPS results we inconsistent with each other beyond the estimated statistical errors. Moreover, the estimated plate motion parameter, which we obtained from the velocity data of six Korean GPS stations, was not well agreeing with any existing results. Therefore, independent measurements are required to distinguish those results. In near future, we will have 4 VLBI stations in Korea. This compact Korean VLBI array is capable of achieving good determination of the plate motion parameters if it is located on stable sites. We estimated the precision of the AM motion parameters with the Korean VLBT array. The results showed that the Korean VLBI array would verify the existence of the AM, as far as the observation precision of 0.2-0.5mm/yr for station velocities is achieved. Therefore, new Korean geodetic VLBI array can contribute to crustal deformation studies in East Asia.

National Datum Transformation Parameters of South Korea Using Weighted Parameter Constraints (가중변수법에 의한 국가좌표계 변환요소의 산정)

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.1
    • /
    • pp.29-39
    • /
    • 1997
  • The need of transformation parameters from local geodetic datums to a geocentric coordinate system is becoming more common, with the increasing application of satellite positioning techniques to LIS/GIS survey with cadastral management. In this paper, the national transformation parameters between the Korean geodetic coordinates which is based on the Bessel 1841 ellipsoid and the WGS84 ellipsoid are determined by the least square methods with weighted parameter constraints. Three-dimensional geocentric coordinates are based on GPS observation at 31 stations in the geodetic network, the datum parameters are computed within a standard deviation of less than 1 meter. In South Korea, the national transformation parameters with Bessel geoid-heights are useful for GPS baseline processing and for middle-scale map/database transformation.

  • PDF

Improved National Datum Transformation Parameters of South Korea (국가좌표계 변환요소의 개선)

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.95-101
    • /
    • 1998
  • In this paper, the historical coordinates data of origin SUWON are reviewed and determination procedures are explained with the three dimensional geocentric coordinates of ITRF94 that is determined using VLBI observations. Also three translation parameters are calculated on the origin point. The national transformation parameters between the Korean geodetic system and Korean Terrestrial Reference Frame 1994(KTRF94) system, are determined using least square methods with weigted parameter constraints. The results of transformation show that one set of parameters are applicable to fixing of a position for GPS relative positioning processing and to adjusting of a network for three dimensional geocentric coordinates(KTRF94) computing.

  • PDF

A Study on Continuous Management Strategy or Published Coordinates of National Geodetic Control Points using GPS Network Adjustment (GPS 측지망 조정을 통한 국가기준점 성과의 상시 산정 체계에 관한 연구)

  • Jung, Kwang-Ho;Lee, Hung-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.367-380
    • /
    • 2011
  • This paper has focused on deriving a GPS based geodetic network adjustment strategy to continuously determine coordinate sets of the national geodetic control points. After domestic literature review on the topic and overseas case studies about countries that recently reformed their geodetic infrastructure have been carried out, a simplified geodetic network consisting of two layers, namely GPS active and passive network, has been proposed to maximize effectiveness of the network adjustment through reducing the number of the passive points. Furthermore, a GPS data processing and network adjustment procedure has been derived to support the continuous management scheme. While a scheme for the active layer adopts a sequential least squares adjustment based on a multi-baseline, that of the passive layer employs a multi-session adjustment technique with respect to 3-dimensional baseline vectors. Finally, experimental adjustment against a network comprising 24 active and 6,900 passive stations has been performed to demonstrate the efficiency and the effectiveness of the proposed method.

Surface deformation monitoring of Augustine volcano, Alaska using GPS measurement - A case study of the 2006 eruption - (GPS를 이용한 미국 알래스카 어거스틴 화산의 지표변위 감시 - 2006년 분화를 중심으로 -)

  • Kim, Su-Kyung;Hwang, Eui-Hong;Kim, Young-Hwa;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.545-554
    • /
    • 2013
  • Augustine is an active stratovolcano located in southwest of Cook Inlet, about 290 kilometers southwest of Anchorage, Alaska. Between January 11 and 28, 2006, the volcano erupted explosively 14 times. We collected twelve permanent GPS stations operating by Plate Boundary Observatory (PBO) from 2005 to 2011. All data processing was carried out using Bernese GPS Software V5.0 with IGS precise orbit. Static baseline processing by fixing AC59 station was applied for the volcano activity monitoring. AC59 is the nearest (about 24.5 km) station to Augustine volcano, and located on North America Plate including Augustine Island. The test results show inflation (9.7 cm/yr) and deflation (-9.2 cm/yr) of volcano before and after eruption around crater clearly. After volcano activity has reached a plateau, some of the GPS stations installed north of the volcano show ground subsidence phenomenon caused by compaction of pyroclastic flows. These results indicate the possibility of using surface deformation observed by GPS for monitoring and prediction of volcano activity.

Influence of Radome Types on GNSS Antenna Phase Center Variation (GNSS 안테나 위상중심변동에 레이돔이 미치는 영향)

  • Yun, Seonghyeon;Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • This paper deals with the impact of a GNSS (Global Navigation Satellite System) antenna radome on the PCV (Phase Center Variations) and the estimated kinematic coordinates. For the Trimble and Leica antennas, specially set up CORS (Continuously Operation Reference Stations) in Korea, the PCC (Phase Center Corrections) were calculated and compared for NONE, SCIS, SCIT, and TZGD radome from the PCV model published by the IGS (International GNSS Services). The results revealed that the PCC differences compared to the NONE were limited to about 1mm in the horizontal component while those of the vertical direction ranged from a few millimeters to a maximum of 7mm. Among the radomes of which PCV were compared, the SCIT had the most significant influence on the vertical component, and its GPS (Global Positioning System) L2 and L2 PCC (Phase Center Corrections) had opposite direction. As a result of comparing the kinematic coordinates estimated by the baseline processing of 7 CORSs with an application of the PCV models of the various radomes, the SCIS which was actually installed at CORS in Korea showed 3.4mm bias, the most substantial impact on the ellipsoidal height estimation whereas the SCIT model resulted in relatively small biases.

Impact of Mathematical Modeling Schemes into Accuracy Representation of GPS Control Surveying (수학적 모형화 기법이 GPS 기준점 측량 정확도 표현에 미치는 영향)

  • Lee, Hungkyu;Seo, Wansoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.445-458
    • /
    • 2012
  • The objective of GPS control surveying is ultimately to determine coordinate sets of control points within targeted accuracy through a series of observations and network adjustments. To this end, it is of equivalent importance for the accuracy of these coordinates to be realistically represented by using an appropriate method. The accuracy representation can be quantitively made by the variance-covariance matrices of the estimates, of which features are sensitive to the mathematical models used in the adjustment. This paper deals with impact of functional and stochastic modeling techniques into the accuracy representation of the GPS control surveying with a view of gaining background for its standardization. In order to achieve this goal, mathematical theory and procedure of the single-baseline based multi-session adjustment has been rigorously reviewed together with numerical analysis through processing real world data. Based on this study, it was possible to draw a conclusion that weighted-constrained adjustment with the empirical stochastic model was among the best scheme to more realistically describe both of the absolute and relative accuracies of the GPS surveying results.

The Estimation of Recent Crustal Movement along the Cam Lo fault from repeated GPS data (GPS 반복관측에 따른 캄로 단층의 최근 지각변동 평가)

  • Hai, Vy-Quoc;Lee, Young-Wook;Kang, Joon-Mook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • The estimation of crustal movements along the Cam Lo fault (Quang Tri province, Vietnam) from repeated GPS data (1995-1998) is addressed in this paper. The study area is relatively small and locates at about latitude of N 16 40' 10" and longitude of E 106 58' 40" in the middle of Vietnam. The network consists of 6 points, is located in 3 tectonics units, baselines are from 3 km to 11 km. GPS observations were perforemed to the stations of our network during two campaigns in March 1995 and May 1998. Considering the relation of coordinate variation and its standard deviation based on the result, some remarks can be made: during interval from March, 1995 to May, 1998, there are movements in the investigated area, and the. vertical movements are stronger than horizontal ones. The above results will be favor in a geophysical interpretation of Cam Lo fault for geologists. This seems to be an encouraging result in studying activity of faults in Vietnam.n Vietnam.

  • PDF

Accuracy Analysis of GPS Ellipsoidal Height Determination in Accordance with the Surveying Conditions (관측조건에 따른 GPS 타원체고 결정의 정확도 분석)

  • Lee, Suk Bae;Auh, Su Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.67-74
    • /
    • 2015
  • GNSS/Leveling technology makes it possible to get geoidal height geometrically using GNSS and Leveling technology. GNSS/Geoid technology refers to a technology for obtaining orthometric height by subtracting geoidal height achieved by Geoid technology from ellipsoidal height achieved by GNSS technology. The purpose of this study is to verify the accuracy of the ellipsoidal height determination in order to verify the accuracy of the orthometric height determination by the GNSS/Geoid technology. For the study, a test bed was selected in Kyungnam province and GNSS Static surveying was accomplished in the test bed and then the GNSS data was processed in accordance with various analysis conditions. So, it was verified the accuracy of the ellipsoidal heights determination in accordance with the surveying conditions under the GNSS Static surveying. According to the research results, to ensure the 3cm goal accuracy of the ellipsoidal height determination, it should be surveyed by four fixed points on the survey area periphery and more than two hours of the GNSS occupation time, And also, it was found that should be limited to a baseline distance of 20km under the GNSS Static surveying.