• Title/Summary/Keyword: GLSE

Search Result 6, Processing Time 0.017 seconds

An Alternative Proof of the Asymptotic Behavior of GLSE in Polynomial MEM

  • Myung-Sang Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.3
    • /
    • pp.75-81
    • /
    • 1996
  • Polynomial measurement error model(MEM) with one predictor is considered. It is briefly mentioned that Chan and Mak's generalized least squares estimator(GLSE) can be derived more easily if Hermite polynomial concept is applied. It is proved that GLSE derived using new procedure is equivalent to the estimator obtained from corrected score function. Finally, much simpler proof of the asymptotic behavior of GLSE than that of Chan and Mak is provided. Much simpler formula of asymptotic covariance matrix of GLSE is a part of that proof.

  • PDF

Lagged Unstable Regressor Models and Asymptotic Efficiency of the Ordinary Least Squares Estimator

  • Shin, Dong-Wan;Oh, Man-Suk
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.251-259
    • /
    • 2002
  • Lagged regressor models with general stationary errors independent of the regressors are considered. The regressor process is unstable having characteristic roots on the unit circle. If the order of the lag matches the number of roots on the unit circle, the ordinary least squares estimator (OLSE) is asymptotically efficient in that it has the same limiting distribution as the generalized least squares estimator (GLSE) under the same normalization. This result extends the well-known result of Grenander and Rosenblatt (1957) for asymptotic efficiency of the OLSE in deterministic polynomial and/or trigonometric regressor models to a class of models with stochastic regressors.

The Efficiency of the Cochrane-Orcutt Estimation Procedure in Autocorrelated Regression Models

  • Song, Seuck-Heun;Myoungshic Jhun;Jung, Byoung-Cheol
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.3
    • /
    • pp.319-329
    • /
    • 1998
  • In the linear regression model with an autocorrelated disturbances, the Cochrane-Orcutt estimator (COE) is a well known alternative to the Generalized Least Squares estimator (GLSE). The efficiency of COE has been studied empirically in a Monte Carlo study when the unknown parameters are estimated by maximum likelihood method. In this paper, it is theoretically proved that the COE is shown to be inferior to the GLSE. The comparisons are based on the difference of corresponding information matrices or the ratio of their determinants.

  • PDF

Pitfalls in the Application of the COTE in a Linear Regression Model with Seasonal Data

  • Seuck Heun Song;YouSung Park
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.353-358
    • /
    • 1997
  • When the disturbances in the linear repression medel are generated by a seasonal autoregressive scheme the Cochrane Orcutt transformation estimator (COTE) is a well known alternative to Generalized Least Squares estimator (GLSE). In this paper it is analyzed in which situation the Ordinary Least Squares estimator (OLSE) is always better than COTE for positive autocorrelation in terms of efficiency which is here defined as the ratio of the total variances.

  • PDF

Efficient Estimation of Regression Coefficients in Regression Model with Moving Average Process (오차항이 이동평균과정을 따르는 회귀모형에서 회귀계수의 효율적 추정에 관한 연구)

  • 송석현;이종협;김기환
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.1
    • /
    • pp.109-124
    • /
    • 1999
  • 일반적으로 오차항이 자기상관되어 있는 선형회귀 모형에서는 회귀계수에 대한 보통최소제곱추정량이 효율적이지 못 하다고 알려져 있다. 그러나 이러한 일반화선형회귀모형에서 독립변수의 형태에 따라서는 OLSE의 사용 가능성을 제시하는 모형이 있다. 본 연구에서는 오차항이 일차 이동평균 과정을 따르는 선형회귀모형에서 여러 추정량들 (GLSE, APX, MAPX)에 대한 OLSE의 상대효율함수를 유도하고 비교 분석하고자 한다. 특히 소표본에서 정확한 상대효율값을 구하여 OLSE의 효율성이 크게 떨어지지 않거나 효율성이 나은 회귀모형들을 제시한다.

  • PDF

Real-Time Automatic Target Tracking Based on Spatio-Temporal Gradient Method with Generalized Least Square Estimation (일반화 최소자승추정의 시공간경사법에 의한 실시간 자동목표 추적)

  • Jang, Ick-Hoon;Kim, Jong-Dae;Kim, Nam-Chul;Kim, Jae-Kyoon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.78-87
    • /
    • 1989
  • In this paper, a spatio-temporal gradient (STG) method with generalized least square estimation (GLSE) is proposed for the detection of an object motion in an image sequence corrupted by white Gaussian noise. The proposed method is applied to an automatic target tracker using a high speed 16-bit microprocessor in order to track one moving target in real time. Experimental results show that the proposed method has much better performance over the conventional one with least square estimation (LSE).

  • PDF